SIEMENS

SINAMICS

SINAMICS G110M

SIEMENS

	Function diagrams	$\mathbf{2}$
SINAMICS	Faults and alarms	3
SINAMICS G110M	Appendix	A
List Manual		
Valid for		
Control Units	Firmware version	
SINAMICS G110M	4.6 HF	
G110M CU240M DP	4.6 HF	
G110M CU240M PN	4.6 HF	

Legal information

Warning notice system

This manual contains information, which you should observe to ensure your own personal safety as well as to protect the product and connected equipment. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to equipment damage have no safety alert symbol. Depending on the hazard level, warnings are indicated in a descending order as follows:

DANGER

indicates that death or serious injury will result if proper precautions are not taken.

WARNING

indicates that death or serious injury could result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one level of danger is simultaneously applicable, the warning notice for the highest level is used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified personnel

The product/system described in this documentation may only be operated by personnel qualified for the specific task in accordance with the relevant documentation for the specific task, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

WARNING

Siemens products are only permitted to be used for the applications listed in the catalog and in the associated technical documentation. If third-party products and components are used, then they must be recommended or approved by Siemens. These products can only function correctly and safely if they are transported, stored, set up, mounted, installed, commissioned, operated and maintained correctly. The permissible ambient conditions must be adhered to. Notes in the associated documentation must be observed.

Trademarks

All names identified with ${ }^{\circledR}$ are registered trademarks of Siemens AG. Any other names used in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of liability

We have checked that the contents of this document correspond to the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. The information given in this document is reviewed at regular intervals and any corrections that might be necessary are made in the subsequent editions.

Table of contents

1 Parameters 7
1.1 Overview of parameters 8
1.1.1 Explanation of the parameter list 8
1.1.2 Number ranges of parameters 17
1.2 List of parameters 20
1.3 Parameters for data sets 388
1.3.1 Command Data Sets (CDS) 388
1.3.2 Drive Data Sets (DDS) 390
1.3.3 Motor Data Sets (MDS) 395
1.3.4 Power unit data sets (PDS) 396
1.3.5 Encoder data set (EDS) 396
1.4 BICO parameters (connectors/binectors) 397
1.4.1 Binector inputs (BI). 397
1.4.2 Connector inputs (CI) 399
1.4.3 Binector outputs (BO). 401
1.4.4 Connector outputs (CO) 402
1.4.5 Connector/binector outputs (CO/BO) 405
1.5 Parameters for write protection and know-how protection. 407
1.5.1 Parameters with "WRITE_NO_LOCK" 407
1.5.2 Parameters with "KHP_WRITE_NO_LOCK" 407
1.5.3 Parameters with "KHP_ACTIVE_READ" 408
1.6 Quick commissioning (p0010=1) 409
2 Function diagrams 411
2.1 Table of contents 412
2.2 Explanations on the function diagrams 417
2.3 Input/output terminals, DIP switch 422
2.4 PROFlenergy 429
2.5 PROFIdrive communication (PROFIBUS/PROFINET) 432
2.6 Communication, fieldbus interface (USS, MODBUS) 447
2.7 Internal control/status words 454
2.8 Brake control 472
2.9 Setpoint channel 474
2.10 Vector control 485
2.11 Technology functions 511
2.12 Free function blocks 513
2.13 Technology controller 534
2.14 Signals and monitoring functions 539
2.15 Diagnostics 550
2.16 Data sets 556
3 Faults and alarms 559
3.1 Overview of faults and alarms 560
3.1.1 General 560
3.1.2 Explanation of the list of faults and alarms. 564
3.1.3 Number ranges of faults and alarms 566
3.2 List of faults and alarms 568
A Appendix 659
A. 1 ASCII table (excerpt) 660
A. 2 List of abbreviations 661
Index 671

Parameters

Content

1.1 Overview of parameters 8
1.2 List of parameters 20
1.3 Parameters for data sets 388
1.4 BICO parameters (connectors/binectors) 397
1.5 Parameters for write protection and know-how protection 407
1.6 Quick commissioning ($\mathrm{p} 0010=1$) 409

1.1 Overview of parameters

1.1.1 Explanation of the parameter list

Basic structure of parameter descriptions

The data in the following example has been chosen at random. The table below contains all the information that can be included in a parameter description. Some of the information is optional.
The "List of parameters" (Page 20) has the following structure:

Start of example

Pxxxx[0..n]	BICO: Full parameter name / abbreviated name			
CU variants	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32	
	Can be changed: $\mathrm{C}(\mathrm{x}), \mathrm{U}, \mathrm{T}$	Scaling: p2002	Dyn. index: CDS, p0170	
	Unit group: 6_2	Unit selection: p0505	Function diagram: 8070	
	Min	Max	Factory setting	
	0.00 [Nm]	10.00 [Nm]	0.00 [Nm]	
Description:	Text			
Values:	0 : Name and meaning of value 0			
	1: Name and meaning of value 1			
	2:etc.			
Recommendation: Text				
Index:	[0] = Name and meaning of index 0 [1] = Name and meaning of index 1 [2] = Name and meaning of index 2 etc.			
Bit array:	Bit Signal name	1 signal	0 signal	FP
	00 Name and meaning of bit 0	Yes	No	8060
	01 Name and meaning of bit 1	Yes	No	-
	02 Name and meaning of bit 2 etc.	Yes	No	8052
Dependency:	Text			
	See also: pxxxx, rxxxx			
	See also: Fxxxxx, Axxxxx			
Danger:	Warning: Caution:	Safety notices	g triangle	
Caution:	Notice:	Safety notices	rning triangle	
Note:	Information that might be useful.			

End of example

The individual pieces of information are described in detail below.

pxxxx[0...n] Parameter number

The parameter number is made up of a " p " or " r ", followed by the parameter number and the index or bit array (optional).

Examples of number representation in the parameter list:

- p... Adjustable parameters (read and write)
- r... Visualization parameters (read-only)
- p0918 Adjustable parameter 918
- p2051[0...13] Adjustable parameter 2051, indices 0 to 13
- p1001[0...n] Adjustable parameter 1001, indices 0 to n ($\mathrm{n}=$ configurable)
- r0944 Display parameter 944
- r2129.0... 15 Display parameter 2129 with bit array from bit 0 (smallest bit) to bit 15 (largest bit)

Other examples of the notation used in the documentation:

- p1070[1] Adjustable parameter 1070, index 1
- p2098[1]. 3 Adjustable parameter 2098, index 1 bit 3
- p0795.4 Adjustable parameter 795, bit 4

The following applies to adjustable parameters:
The parameter value "when shipped" is specified under "Factory setting" with the relevant unit in square parentheses. The value can be adjusted within the range defined by "Min" and "Max".

The term "linked parameterization" is used in cases where changes to adjustable parameters affect the settings of other parameters.

Linked parameterization can occur, for example, as a result of the following actions and parameters:

- Setting PROFIBUS telegram (BICO interconnection)
p0922
- Setting component lists
p0230, p0300, p0301, p0400
- Calculate and pre-assign automatically
p0340, p3900
- Restore the factory settings
p0970
The following applies to display parameters:
The fields "Min", "Max" and "Factory setting" are specified with a dash "-" and the relevant unit in square parentheses.

Note

The parameter list can contain parameters that are not visible in the expert lists of the particular commissioning software (e. g. parameters for trace functions).

BICO technology: Long parameter name / short parameter name

The following abbreviations can appear in front of the BICO parameter name:

- BI: Binector Input

This parameter is used for selecting the source of a digital signal.

- BO: Binector Output

This parameter is available as a digital signal for interconnection with other parameters.

- CI: Connector Input

This parameter is used for selecting the source of an "analog" signal.

- CO: Connector Output

This parameter is available as an "analog" signal for interconnection with other parameters.

- CO/BO: Connector/Binector Output

This parameter is available as an "analog" and digital signal for interconnection with other parameters.

Note

A BICO input ($\mathrm{BI} / \mathrm{CI}$) cannot be interconnected with just any BICO output ($\mathrm{BO} / \mathrm{CO}$, signal source).
When interconnecting a BICO input using the commissioning software, only the corresponding possible signal sources are listed.

Function diagrams 1020 ... 1030 explain the symbols for BICO parameters and how to deal with BICO technology.

CU variants

Indicates for which Control Units (CU) the parameter is valid. If no CU is listed, then the parameter is valid for all variants.

The following information relating to "CU" can be displayed under the parameter number:
Table 1-1 Information in the "CU variants" field

CU variants	Significance
All objects	All Control Units have this parameter.
CU_G110M_DP	G110M with PROFIBUS interface
CU_G110M_PN	G110M with PROFINET interface
CU_G110M_USS	G110M with USS fieldbus interface

Access level

Specifies the minimum access level required to be able to display and change the relevant parameter. The required access level can be set using p0003.

The system uses the following access levels:

- 1: Standard (not adjustable, included in p0003 = 3)
- 2: Extended (not adjustable, included in p0003 = 3)
- 3: Expert
- 4: Service

Parameters with this access level are password protected.

Note

Parameter p0003 is CU-specific (available on the Control Unit).
A higher access level will also include the functions of the lower levels.

Calculated

Specifies whether the parameter is influenced by automatic calculations.
p0340 determines which calculations are to be performed:

- $\mathrm{p} 0340=1$ includes the calculations from $\mathrm{p} 0340=2,3,4,5$.
- p0340 $=2$ calculates the motor parameters (p0350 ... p0360, p0625).
- $\mathrm{p} 0340=3$ includes the calculations from $\mathrm{p} 0340=4,5$.
- p0340 $=4$ only calculates the controller parameters.
- p0340 $=5$ only calculates the controller limits.

Note

For $\mathrm{p} 3900>0, \mathrm{p} 0340=1$ is also called automatically.
After $\mathrm{p} 1900=1,2, \mathrm{p} 0340=3$ is also called automatically.
Parameters with a reference to p0340 after "Calculated" depend on the Power Module being used and the motor. In this case, the values at "Factory setting" do not correspond to the actual values because these values are calculated during the commissioning. This also applies to the motor parameters.

Data type

The information on the data type can consist of the following two items (separated by a slash):

- First item

Data type of the parameter.

- Second item (for binector or connector input only)

Data type of the signal source to be interconnected (binector-/connector output).
Parameters can have the following data types:

- Integer8 18 8-bit integer number
- Integer16 116 16-bit integer number
- Integer32 132 32-bit integer number
- Unsigned8 U8 8 bits without sign
- Unsigned16 U16 16 bits without sign
- Unsigned32 U32 32 bits without sign
- FloatingPoint32 Float 32-bit floating point number

Depending on the data type of the BICO input parameter (signal sink) and BICO output parameter (signal source), the following combinations are possible when creating BICO interconnections:

Table 1-2 Possible combinations of BICO interconnections

		BICO inpu	parameter	
		CI parameter		BI parameter
BICO output parameter	Unsigned32 Integer16	Unsigned32/Integer 32	Unsigned32/Floatin gPoint32	Unsigned32 Binary
CO: Unsigned8	x	x	-	-
CO: Unsigned16	x	X	-	-
CO: Unsigned32	x	X	-	-
CO: Integer16	x	x	r2050	-
CO: Integer32	x	x	r2060	-
CO: FloatingPoint32	x	x	x	-
BO: Unsigned8	-	-	-	x
BO: Unsigned16	-	-	-	x
BO: Unsigned32	-	-	-	x
BO: Integer16	-	-	-	x
BO: Integer32	-	-	-	x
BO: FloatingPoint32	-	-	-	-
Legend:	CO interconnec CO interconnec CO interconnec	permitted not permitted is only permitted for th	specified CO paramet	

Can be changed

The "-" sign indicates that the parameter can be changed in any object state and that the change will be effective immediately.

The information " $\mathrm{C}(\mathrm{x}), \mathrm{T}, \mathrm{U}$ " ((x): optional) means that the parameter can be changed only in the specified drive unit state and that the change will not take effect until the unit switches to another state. This can be a single or multiple states.

The following states may be specified:

- $C(x)$ Commissioning C: Commissioning

Drive commissioning is in progress ($\mathrm{p} 0010>0$).
Pulses cannot be enabled.
The parameter can only be changed in the following drive commissioning settings (p0010 > 0):

- C: Can be changed for all settings p0010>0.
- $C(x)$: Can only be changed for the settings p0010 = x.

A modified parameter value does not take effect until drive commissioning mode is exited with p0010 $=0$.

- U Operation
U: Run Pulses are enabled.
- T Ready T: Ready to run
The pulses are not enabled and the status " $\mathrm{C}(\mathrm{x})$ " is not active.

Scaling

Specification of the reference variable with which a signal value is automatically converted for a BICO interconnection.

The following reference variables are available:

- p2000 ... p2006: Reference speed, reference voltage, etc.
- PERCENT: $1.0=100 \%$
- 4000H: 4000 hex = 100 \%

Dyn. index (dynamic index)

For parameters with a dynamic index [0...n], the following information is specified here:

- Data set (if available).
- Parameter for the number of indices ($\mathrm{n}=$ number -1).

This field can contain the following information:

- "CDS, p0170" (Command Data Set, CDS count)

Example:
p1070[0] \rightarrow main setpoint [command data set 0]
p1070[1] \rightarrow main setpoint [command data set 1], etc.

- "DDS, p0180" (Drive Data Set, DDS count)
- "EDS, p0140" (Encoder Data Set, EDS count)
- "MDS, p0130" (Motor Data Set, MDS count)
- "PDS, p0120" (Power unit Data Set, PDS count)

Data sets can only be created and deleted when p0010 $=15$.

Note

Information on the data sets can be taken from the following references:
SINAMICS G110M operating instructions.

Unit group and unit selection

The standard unit of a parameter is specified in square parentheses after the values for "Min", "Max", and "Factory setting".

For parameters where the unit can be switched, the specifications for "Unit group" and "Unit selection" determine the group to which this parameter belongs and with which parameter the unit can be switched over.

Example:

Unit group: 7_1, unit selection: p0505
The parameter belongs to unit group 7_1 and the unit can be changed over using p0505.
All the potential unit groups and possible unit selections are listed below.
Table 1-3 Unit group (p0100)

Unit group	Unit Choice for p0100 =			Reference variable for \%
	$\mathbf{0}$		$\mathbf{1}$	$\mathbf{2}$
$7 _4$	Nm	lbfft	Nm	-
$14 _6$	kW	hp	kW	-
$25 _1$	$\mathrm{~kg} \mathrm{~m}^{2}$	$\mathrm{lb} \mathrm{ft}^{2}$	$\mathrm{~kg} \mathrm{~m}^{2}$	-
$27 _1$	kg	lb	kg	-
$28 _1$	Nm / A	$\mathrm{lbf} \mathrm{ft} / \mathrm{A}$	Nm / A	-

Table 1-4 Unit group (p0505)

Unit group	Unit Choice for p0505 =				Reference variable for \%			
	$\mathbf{1}$		$\mathbf{2}$		$\mathbf{3}$		$\mathbf{4}$	
2_1	Hz	$\%$	Hz	$\%$	p2000			
$3 _1$	rpm	$\%$	rpm	$\%$	p2000			
5_1	Vrms	$\%$	Vrms	$\%$	p2001			
5_2	V	$\%$	V	$\%$	p2001			
5_3	V	$\%$	V	$\%$	p2001			
6_2	Aeff	$\%$	Aeff	$\%$	p2002			
6_5	A	$\%$	A	$\%$	p2002			

Table 1-4 Unit group (p0505), continued

Unit group	Unit Choice for p0505 =				Reference variable for \%
	1	2	3	4	
7_1	Nm	\%	lbf ft	\%	p2003
7_2	Nm	Nm	lbf ft	lbf ft	-
14_5	kW	\%	hp	\%	r2004
14_10	kW	kW	hp	hp	-
21_1	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
21_2	K	K	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$	-
39_1	$1 / \mathrm{s}^{2}$	\%	$1 / \mathrm{s}^{2}$	\%	p2007

Table 1-5 Unit group (p0595)

Unit group	Unit Choice for p0595 =	Reference variable for \%
	Value	Unit

Function diagram

The parameter is included in this function diagram. The structure of the parameter function and its relationship with other parameters is shown in the specified function diagram.

Parameter values

Min	Minimum value of the parameter [unit]
Max	Maximum value of the parameter [unit]
Factory setting	Value when shipped [unit]

In the case of a binector/connector input, the signal source of the default BICO interconnection is specified. A non-indexed connector output is assigned the index [0].

A different value may be displayed for certain parameters
(e .g. p1800) at the initial commissioning stage or when establishing the factory settings.
Reason:
The setting of these parameters is determined by the operating environment of the Control Unit (e. g. depending on converter type, power unit).

Description

Explanation of the function of a parameter.

Values

Lists the possible values of a parameter.

Recommendation

Information about recommended settings.

Index

The name and meaning of each individual index is specified for indexed parameters. The following applies to the values (Min, Max, Factory setting) of indexed adjustable parameters:

- Min, Max:

The adjustment range and unit apply to all indices.

- Factory setting:

When all indices have the same factory setting, index 0 is specified with the unit to represent all indices.

When the indices have different factory settings, they are all listed individually with the unit.

Bit array

For parameters with bit arrays, the following information is provided about each bit:

- Bit number and signal name
- Meaning with signal states 1 and 0
- Function diagram (FP) (optional).

The signal is shown on this function diagram.

Dependency

Conditions that must be fulfilled in conjunction with this parameter. Also includes special effects that can occur between this parameter and others.

Where necessary, "See also:" indicates the following information:

- List of other relevant parameters to be considered.
- List of faults and alarms to be considered.

Safety guidelines

Important information that must be observed to avoid the risk of physical injury or material damage.

Information that must be observed to avoid any problems.

Information that the user may find useful.

Warning

Caution

Caution

Notice

Note

Danger The description of this safety notice can be found at the beginning of this manual, see "Legal information" (Page 4).

The description of this safety notice can be found at the beginning of this manual, see "Legal information" (Page 4).

The description of this safety notice can be found at the beginning of this manual, see "Legal information" (Page 4).

The description of this safety notice can be found at the beginning of this manual, see "Legal information" (Page 4).

The description of this safety notice can be found at the beginning of this manual, see "Legal information" (Page 4).

Information that the user may find useful.

1.1.2 Number ranges of parameters

Note

The following number ranges represent an overview for all of the parameters available for the SINAMICS drive family.

The parameters for the product described in this List Manual are described in detail in "List of parameters" (Page 20).

Parameters are grouped into the following number ranges:
Table 1-6 Number ranges for SINAMICS

Area		Description
from	to	
0000	0099	Display and operation
0100	0199	Commissioning
0200	0299	Power unit
0300	0399	Motor
0400	0499	Encoder
0500	0599	Technology and units, motor-specific data, probes
0600	0699	Thermal monitoring, maximum current, operating hours, motor data, central probe
0700	0799	Control Unit terminals, measuring sockets

Table 1-6 Number ranges for SINAMICS, continued

Area		Description
from	to	
0800	0839	CDS, DDS data sets, motor changeover
0840	0879	Sequence control (e. g. signal source for ON/OFF1)
0880	0899	ESR, parking, control and status words
0900	0999	PROFIBUS/PROFIdrive
1000	1199	Setpoint channel (e. g. ramp-function generator)
1200	1299	Functions (e. g. motor holding brake)
1300	1399	U/f control
1400	1799	Control
1800	1899	Gating unit
1900	1999	Power unit and motor identification
2000	2009	Reference values
2010	2099	Communication (fieldbus)
2100	2139	Faults and alarms
2140	2199	Signals and monitoring
2200	2359	Technology controller
2360	2399	Staging, hibernation
2500	2699	Position control (LR) and basic positioning (EPOS)
2700	2719	Reference values, display
2720	2729	Load gearbox
2800	2819	Logic operations
2900	2930	Fixed values (e. g. percentage, torque)
3000	3099	Motor identification results
3100	3109	Real-time clock (RTC)
3110	3199	Faults and alarms
3200	3299	Signals and monitoring
3400	3659	Infeed closed-loop control
3660	3699	Voltage Sensing Module (VSM), Braking Module internal
3700	3779	Advanced Positioning Control (APC)
3780	3819	Synchronization
3820	3849	Friction characteristic
3850	3899	Functions (e. g. long stator)
3900	3999	Management
4000	4599	Terminal Board, Terminal Module (e. g. TB30, TM31)
4600	4699	Sensor Module
4700	4799	Trace

Table 1-6 Number ranges for SINAMICS, continued

Area		Description
from	to	
4800	4849	Function generator
4950	4999	OA application
5000	5169	Spindle diagnostics
5200	5230	Current setpoint filter 5 ... 10 (r0108.21)
5400	5499	System droop control (e. g. shaft generator)
5500	5599	Dynamic grid support (solar)
5600	5614	PROFlenergy
5900	6999	SINAMICS GM/SM/GL/SL
7000	7499	Parallel connection of power units
7500	7599	SINAMICS SM120
7700	7729	External messages
7770	7789	NVRAM, system parameters
7800	7839	EEPROM read/write parameters
7840	8399	Internal system parameters
8400	8449	Real-time clock (RTC)
8500	8599	Data and macro management
8600	8799	CAN bus
8800	8899	Communication Board Ethernet (CBE), PROFIdrive
8900	8999	Industrial Ethernet, PROFINET, CBE20
9000	9299	Topology
9300	9399	Safety Integrated
9400	9499	Parameter consistency and storage
9500	9899	Safety Integrated
9900	9949	Topology
9950	9999	Diagnostics, internal
10000	10199	Safety Integrated
11000	11299	Free technology controller 0, 1, 2
20000	20999	Free function blocks (FBLOCKS)
21000	25999	Drive Control Chart (DCC)
50000	53999	SINAMICS DC MASTER (closed-loop DC current control)
61000	61001	PROFINET

1.2 List of parameters

1.2 List of parameters

Product: G110M, Version: 4602113, Language: eng
Objects: CU_G110M_DP, CU_G110M_PN, CU_G110M_USS

r0002	Drive operating display / Drv op_display		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	200	-
Description:	Operating display for the drive.		
Value:	0: Operation - everything enabled		
	10: Operation - set "enable setpoint" = "1" (p1142)		
	12: Operation - RFG frozen, set "RFG start" = "1" (p1141)		
	13: Operation - set "enable RFG" = "1" (p1140)		
	14: Operation - MotID, excit. running		
	15: Operation - open brake (p1215)		
	16: Operation - withdraw braking with OFF1 using "O		
	17: Operation - braking with OFF3 can only be interr		
	18: Operation - brake on fault, remove fault, acknowl		
	19: Operation - DC braking active (p1230, p1231)		
	21: Ready for operation - set "Operation enable" = "1		
	22: Ready for operation - de-magnetizing running (p0		
	31: Ready for switching on-set "ON/OFF1" = "0/1" (
	35: Switching on inhibited - carry out first commission		
	41: Switching on inhibited - set "ON/OFF1" = "0" (p08		
	42: Switching on inhibited - set "OC/OFF2" = "1" (p08		
	43: Switching on inhibited - set "OC/OFF3" = "1" (p08		
	45: Switching on inhibited - rectify fault, acknowledge		
	46: Switching on inhibited - exit comm mode (p0010)		
	$\begin{array}{ll}\text { 70: } & \text { Initialization } \\ \text { 200: } & \text { Wait for booting/partial booting }\end{array}$		
Dependency:Notice:	Refer to: r0046		
	For several missing enable signals, the corresponding value with the highest number is displayed.		
Note:	OC: Operating condition		
	RFG: Ramp-function generator		
	COMM: Commissioning		
	MotID: Motor data identification		
p0003	Access level / Acc_level		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}, \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	3	4	3
Description: Sets the access level to read		Sets the access level to read and write parameters.	
Value:	3: Expert 4: Service		
Note:	A higher set access level also includes the lower one.		
	Access level 3 (experts):		
	Expert know-how is required for these parameters (e.g. BICO parameterization).		
	Access level 4 (service):		
	For these parameters, it is	that authorized ser	er the appropriate passw

p0010	Drive commissioning parameter filter / Drv comm. par_filt		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1)$, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2800, 2818
	Min	Max	Factory setting
	0	95	1
Description:	Sets the parameter filter to commission a drive.		
	Setting this parameter filters out the parameters that can be written into in the various commissioning steps.		
Value:	0: Ready		
	1: Quick commissioning		
	2: Power unit commissioning		
	3: Motor commissioning		
	5: Technological application/units		
	11: Function modules		
	15: Data sets		
	29: Only Siemens int		
	30: Parameter reset		
	39: Only Siemens int		
	49: Only Siemens int		
	95: Safety Integrated commissioning		
Dependency: Refer to: r3996			
Notice:	When the parameter is reset to a value of 0 , short-term communication interruptions may occur.		
Note:	The drive can only be powered up outside the drive commissioning (inverter enable). To realize this, this parameter must be set to 0 .		
	By setting p3900 to a value other than 0 , the quick commissioning is completed, and this parameter is automatically reset to 0 .		
	Procedure for "Reset parameter": Set p0010 to 30 and p0970 to 1.		
	Once the Control Unit has been booted up for the first time, the motor parameters suitable for the power unit have been defined, and the control parameters have been calculated accordingly, p0010 is automatically reset to 0 .		
	p0010 $=3$ is used for the subsequent commissioning of additional drive data sets (creating data sets: see p0010 $=$ 15).		
	p0010 = 29, 39, 49: Only for internal Siemens use!		
p0014	Buffer memory mode / Buf mem mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	0
Description:	Sets the mode for the buffer memory.		
Value:	$0: \quad$ Save in a non-volatile fashion (RAM)		
	1: Buffer memory active (non-volatile)		
Dependency:	If p0014 = 1, changes in the same parameter, as well as in following parameters will not be copied to the buffer memory:		
	Refer to: p0040, p0340, p0650, p0802, p0803, p0804, p0952, p0969, p0970, p0971, p0972, p1900, p1910, p1960, p2111, p3900, p3981		
Notice:	For p0014 = 2, entries in the buffer memory are lost and cannot be retrieved.		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		

1.2 List of parameters

Note: | The parameter is not influenced by setting the factory setting. |
| :--- |
| Re p0014 = 0: |
| Parameter changes are saved in the volatile memory (RAM). |
| Non-volatile storage from RAM to ROM is carried out in the following cases: |
| - p0971 = 1 |
| - change from p0014 = 0 to 1 |
| Re p0014 = 1: |
| With this setting, alarm A01066 followed by alarm A01067 can occur if parameters are continually changed via a |
| fieldbus system. |
| Parameter changes are entered in the volatile memory (RAM) and also in the non-volatile buffer memory. |
| In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is |
| cleared: |
| - p0971 = 1 |
| - power down/power up the Control Unit |
| - change from p0014 = 1 to 0 |
| |
| Re p0014 = 2 : |
| The procedure to clear the entries in the buffer memory is initiated. |
| |
| p0014 is automatically set to 0 after the entries have been cleared. |

p0015	Macro drive unit / Macro drv unit		
CU_G110M_DP	Access level: 1	Calculated: -	Data type: Unsigned32
CU_G110M_PN	Can be changed: $\mathrm{C}, \mathrm{C}(1)$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	999999	7
Description:	Runs the corresponding macro files.		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996 Modifications can be made again when r3996 $=0$.		
	When executing a specific macro, the corresponding programmed settings are made and become active.		
Note:	Macros available as standard are described in the technical documentation of the particular product.		
	The parameter is not influenced by setting the factory setting.		

p0015	Macro drive unit / Macro drv unit		
CU_G110M_USS	Access level: 1	Calculated: -	Data type: Unsigned32
	Can be changed: C, C(1)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	999999	29
Description:	Runs the corresponding macro files.		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	Macros available as standard are described in the technical documentation of the particular product.		
r0018	Control Unit firmware version / CU FW version		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4294967295	-
Description:	Displays the firmware version of the Control Unit.		
Dependency:	Refer to: r0197, r0198		

r0024	Output frequency smoothed / f_outp smooth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1690, 5300, 5730, 6799
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the smoothed converter frequency.		
Dependency:	Refer to: r0066		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The output frequency	oothed (r0024) and	

r0025	CO: Output voltage smoothed / U_outp smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1690, 5730, 6799
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the smoothed output voltage of the power unit.		
Dependency:	Refer to: r0072		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.The output voltage is available smoothed (r0025) and unsmoothed (r0072).		

r0026	CO: DC link voltage smoothed / Vdc smooth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6799
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the smoothed actual value of the DC link voltage.		
Dependency:	Refer to: r0070		
Notice:	When measuring a DC link voltage < 200 V , for the Power Module (e.g. PM240) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
Note:	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).r0026 sets itself to the lower value of the pulsating DC link voltage.		

r0027	CO: Absolute actual current smoothed / I_act abs val smth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 5730, 6799, 8850, 8950
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the smoothed absolute actual current value.		
Dependency:	Refer to: r0068		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		

Note: | Smoothing time constant $=300 \mathrm{~ms}$ |
| :--- |
| The signal is not suitable as a process quantity and may only be used as a display quantity. |
| The absolute current actual value is available smoothed (r0027) and unsmoothed (r0068). |

r0028	Modulation depth smoothed / Mod_depth smth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: $5730,6799,8950$
	Min	$-[\%]$	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the smoothed actual value of the modulation depth.		
Dependency:	Refer to: r0074		
Note:	Smoothing time constant = 100 ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		

r0029	Current actual value field-generating smoothed $/$ Id_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6799
	Min	Max	Factory setting
	$-[$ Arms $]$	- [Arms $]$	
Description:	Displays the smoothed field-generating actual current.		
Dependency:	Refer to: r0076		
Note:	Smoothing time constant $=300$ ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		

r0030	Current actual value torque-generating smoothed / lq_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6799
	Min	$-[$ Arms $]$	Factory setting
	$-[$ Arms $]$	- [Arms $]$	
Description:	Displays the smoothed torque-generating actual current.		
Dependency:	Refer to: r0078		
Note:	Smoothing time constant $=300$ ms		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque-generating current actual value is available smoothed (r0030) and unsmoothed (r0078).		

r0031

escription:

Actual torque smoothed / M_act smooth		
Access level: 2	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: p2003	Dyn. index: -
Units group: 7_1	Unit selection: p0505	Func. diagram: 5730, 6799
Min	Max	Factory setting
- [Nm]	- [Nm]	- [Nm]
Displays the smoothed torque actual value.		
Refer to: r0080		
Smoothing time constant $=100 \mathrm{~ms}$		
The signal is not suitable as a process quantity and may only be used as a display quantity.		
The torque actual value is available smoothed (r0031) and unsmoothed (r0080).		

r0032	CO: Active power actual value smoothed / P_actv_act smth		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dyn. index:-
	Units group: 14_10	Unit selection: p0505	Func. diagram: 5730, 6799, 8750, 8850, 8950
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the smoothed actual value of the active power.		
Dependency:	Refer to: r0082		
Notice:	This smoothed signal is not suitable for diagnostics or evaluation of dynamic operations. In this case, the unsmoothed value should be used.		
Note:	Power delivered at the motor shaft.		
	The active power is available smoothed (r0032 with 100 ms) and unsmoothed (r0082).		
r0033	Torque utilization smoothed / M_util smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the smoothed torque utilization as a percentage.		
	The torque utilization is obtained from the required smoothed torque in reference to the torque limit, scaled using p2196.		
Dependency: Note:	This parameter is only available for vector control. For U/f control r0033 $=0 \%$.		
	Smoothing time constant $=100 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		
	The torque utilization is available smoothed (r0033) and unsmoothed (r0081).		
	For M_set total (r0079) > 0 , the following applies:		
	- Required torque = M_set total		
	- Actual torque limit = M_max upper effective (r1538)		
	For M_set total (r0079) < = 0, the following applies:		
	- Required torque $=-\mathrm{M}$ _set total		
	- Actual torque limit = - M_max lower effective (r1539)		
	For the actual torque limit = 0, the following applies: $\mathrm{r0033}=100 \%$		
	For the actual torque limit < 0, the following applies: r0033 $=0 \%$		
r0034	CO: Motor utilization / Motor utilization		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8017
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the motor utiliz	tor temperature model 1	
Dependency:	The motor utilization is only determined for permanent-magnet synchronous motors when the motor temperature model 1 (I2t) or 3 is activated.		
	For motor temperature model $1(12 \mathrm{t})(\mathrm{p} 0612.0=1)$, the following applies:		
	- r0034 = (motor model temperature - 40 K) / (p0605-40 K) * 100 \%		
	For motor temperature model 3 (p0612.2 $=1$), the following applies:		
	- r0034 = (motor model temperature - p5397) / (p5398-p5397) * 100 \%		
	Refer to: p0612		
Notice:	After the drive is switched on, the system starts to determine the motor temperature with an assumed model value This means that the value for the motor utilization is only valid after a stabilization time.		

Sote:
Thoothing time constant $=100 \mathrm{~ms}$
For r0034 is not suitable as a process quantity and may only be used as a display quantity.
The value is invalid (e.g. the motor temperature model is not activated or has been incorrectly parameterized).

r0035	CO: Motor temperature / Mot temp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: -
	Units group: 21_1	Unit selection: p0505	Func. diagram: 7008, 8016, 8017
	Min	Max	Factory setting
	- [$\left.{ }^{\circ} \mathrm{C}\right]$	$-\left[^{\circ} \mathrm{C}\right]$	- [$\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the actual temperature in the motor.		
Note:	For r0035 not equal to $-200.0^{\circ} \mathrm{C}$, the following applies:		
	- this temperature display is valid.		
	- a KTY sensor is connected.		
	- for induction motors, the thermal motor model is activated (p0601 $=0$).		
	For r0035 equal to $-200.0^{\circ} \mathrm{C}$, the following applies:		
	- this temperature display is not valid (temperature sensor error).		
	- A PTC sensor or bimetallic NC contact is connected.		
	- for synchronous motors, the thermal motor model is activated (p0601 $=0$).		
r0036	CO: Power unit overload I2t / PU overload I2t		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8014
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the power unit overload determined using the I2t calculation.		
	A current reference value is defined for the 12 t monitoring of the power unit. It represents the current that can be conducted by the power unit without any influence of the switching losses (e.g. the continuously permissible current of the capacitors, inductances, busbars, etc.).		
	If the 12 t reference current of the power unit is not exceeded, then an overload (0\%) is not displayed.		
	In the other case, the degree of thermal overload is calculated, whereby 100% results in a trip.		
Dependency:	Refer to: p0290, p0294		

r0037[0...19] CO: Power unit temperatures / PU temperatures
Access level: 4 Calculated: - Data type: FloatingPoint32

Can be changed: -
Units group: 21_1 Min
$-\left[{ }^{\circ} \mathrm{C}\right]$
Displays the temperatures in the power unit
[0] = Inverter maximum value
[1] = Depletion layer maximum value
[2] = Rectifier maximum value
[3] = Air intake
[4] = Interior of power unit
[5] = Inverter 1
[6] = Inverter 2
[7...10] = Reserved
[11] = Rectifier 1
[12] = Reserved
[13] = Depletion layer 1
[14] = Depletion layer 2
[15] = Depletion layer 3
[16] $=$ Depletion layer 4

Data type: FloatingPoint32
Dyn. index: -
Func. diagram: 8014
Factory setting

- $\left[{ }^{\circ} \mathrm{C}\right]$

Description:
Index:

Scaling: p2006
Unit selection: p0505
Max
$-\left[{ }^{\circ} \mathrm{C}\right]$

1.2 List of parameters

	$[17]=$ Depletion layer 5
	$[18]=$ Depletion layer 6
	$[19]=$ Reserved
Notice:	Only for internal Siemens troubleshooting.
Note:	The value of -200 indicates that there is no measuring signal.
	r0037[0]: Maximum value of the inverter temperatures (r0037[5...10]).
	r0037[1]: Maximum value of the depletion layer temperatures (r0037[13...18]).
	r0037[2]: Maximum value of the rectifier temperatures (r0037[11...12]).
	The maximum value is the temperature of the hottest inverter, depletion layer, or rectifier.
	r0037[2, 3, 6, 11, 14...18] is only relevant for chassis power units.

r0038	Power factor smoothed / Cos phi smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6799, 8850, 8950
	Min	Max	Factory setting
	-	-	-
Description:	Displays the smoothed actual power factor. This refers to the electrical power of the basic fundamental signals at the converter output terminals.		
Notice:	For infeed units, the following applies:		
	For active powers < 25 \% of the rated power, this does not provide any useful information.		
Note:	Smoothing time constant $=300 \mathrm{~ms}$		
	The signal is not suitable as a process quantity and may only be used as a display quantity.		

r0039[0...2]	Energy display / Energy displ		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[\mathrm{kWh}]$	$-[\mathrm{kWh}]$	$-[\mathrm{kWh}]$

Description: Displays the energy values at the output terminals of the power unit.
Index: [0] = Energy balance (sum)
[1] = Energy drawn
[2] = Energy fed back
Dependency: Refer to: p0040
Note:
Re index 0 :
Sum of the energy drawn and energy that is fed back.

p0040	Reset energy consumption display / Energy usage reset		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	1	Factory setting
Description:	0	Setting to reset the display in r0039 and r0041.	
	Procedure:		
	Set p0040 $=0$--> 1		
Dependency:	The displays are reset and the parameter is automatically set to zero.		
	Refer to: r0039		

r0041	Energy consumption saved / Energy cons saved					
	Access level: 2		Calculated: -		Data type: FloatingPoint32	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	- [kWh]		- [kWh]		- [kWh]	
Description: Dependency: Note:	Displays the saved energy referred to 100 operating hours.					
	This display is used for a fluid-flow machine.					
	The flow characteristic is entered into p3320 ... p3329.					
	For an operating time of below 100 hours, the display is interpolated up to 100 hours.					
p0045	Display values smoothing time constant / Disp_val T_smooth					
	Access level: 3		Calculated: -		Data type: FloatingPoint32	
	Can be changed: U, T		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: 6714, 8012	
	Min				Factory setting	
	0.00 [ms]		10000.00 [ms]		4.00 [ms]	
Description:	Sets the smoothing time constant for the following display values: r0063[1], r0068[1], r0080[1], r0082[1].					
r0046.0.. 31	CO/BO: Missing enable sig / Missing enable sig					
	Access level: 1		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: 2634	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays missing enable signals that are preventing the closed-loop drive control from being commissioned.					
Bit field:		Signal name		1 signal	0 signal	FP
		OFF1 enable mis		Yes	No	-
		OFF2 enable mis		Yes	No	-
		OFF3 enable mis		Yes	No	-
		Operation enable		Yes	No	-
		DC braking enab		Yes	No	-
		Ramp-function ge	e missing	Yes	No	-
		Ramp-function ge	missing	Yes	No	-
		Setpoint enable m		Yes	No	-
		OFF1 enable inte		Yes	No	-
		OFF2 enable inte		Yes	No	-
		OFF3 enable inte		Yes	No	-
		Pulse enable inte		Yes	No	-
		DC braking intern		Yes	No	-
		PU enab missing		Yes	No	-
		Drive inactive or		Yes	No	-
		De-magnetizing		Yes	No	-
		Brake open missin		Yes	No	-
		Speed controller		Yes	No	-
		Jog setpoint activ		Yes	No	-
Dependency:	Refer to: r0002					
Note:	The value r0046 $=0$ indicates that all enable signals for this drive are present.					
	Bit $00=1$ (enable signal missing), if:					
	- the signal source in p0840 is a 0 signal.					
	- there is a "switching on inhibited".					
	Bit $01=1$ (enable signal missing), if:					
		- the signal source in p0844 or p0845 is a 0 signal.				

1.2 List of parameters

Bit $02=1$ (enable signal missing), if:

- the signal source in p0848 or p0849 is a 0 signal.

Bit $03=1$ (enable signal missing), if:

- the signal source in p0852 is a 0 signal.

Bit $04=1$ (DC brake active) when:

- the signal source in p1230 has a 1 signal

Bit $10=1$ (enable signal missing), if:

- the signal source in p1140 is a 0 signal.

Bit $11=1$ (enable signal missing) if the speed setpoint is frozen, because:

- the signal source in p1141 is a 0 signal.
- the speed setpoint is entered from jogging and the two signal sources for jogging, bit 0 (p 1055) and bit 1 (p1056)
have a 1 signal.
Bit $12=1$ (enable signal missing), if:
- the signal source in p1142 is a 0 signal.

Bit $16=1$ (enable signal missing), if:

- there is an OFF1 fault response. The system is only enabled if the fault is removed and was acknowledged and the
"switching on inhibited" withdrawn with OFF1 $=0$.
Bit $17=1$ (enable signal missing), if:
- commissioning mode is selected (p0010>0).
- there is an OFF2 fault response.
- the drive is not operational.

Bit $18=1$ (enable signal missing), if:

- OFF3 has still not been completed or an OFF3 fault response is present.

Bit $19=1$ (internal pulse enable missing), if:

- sequence control does not have a finished message.

Bit $20=1$ (internal DC brake active), if:

- the drive is not in the state "Operation" or in "OFF1/3".
- the internal pulse enable is missing (r0046.19 = 0).

Bit $21=1$ (enable signal missing), if:

- the power unit does not issue an enable signal (e.g. because DC link voltage is too low).
- the holding brake opening time (p 1216) has still not expired.
- hibernation is active.

Bit $26=1$ (enable signal missing), if:

- the drive is not operational.

Bit 27 = 1 (enable signal missing), if:

- de-magnetization not completed.

Bit $28=1$ (enable signal missing), if:

- the holding brake is closed or has still not been opened.

Bit $30=1$ (speed controller inhibited), if one of the following reasons is present:

- the pole position identification is active.
- motor data identification is active (only certain steps).

Bit $31=1$ (enable signal missing), if:

- the speed setpoint from jog 1 or 2 is entered.

Motor data identification and speed controller optimization / MotlD and n_opt		
Access level: 1	Calculated: -	Data type: Integer16
Can be changed: -	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
0	300	-
Displays the actual status for the motor data identification (stationary measurement) and the speed/velocity controller		
optimization (rotating measurement).		
$0: \quad$ No measurement		
$115: \quad$ Measurement q leakage inductance (part 2)		
$120:$	Speed controller optimization (vibration test)	
$140:$	Calculate speed controller setting	

r0052.0..15 CO/BO: Status word 1 / ZSW 1
Access level: $2 \quad$ Calculated: - Data type: Unsigned16
Can be changed: - Scaling: - Dyn. index: -

Units group: - Unit selection: - Func. diagram: -
Min Max Factory setting

Description: Display and connector output for status word 1.
Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Rdy for switch on	Yes	No	-
01	Ready	Yes	No	-
02	Operation enabled	Yes	No	-
03	Fault present	Yes	No	-
04	Coast down active (OFF2)	No	Yes	-
05	Quick Stop active (OFF3)	No	Yes	-
06	Switching on inhibited active	Yes	No	-
07	Alarm present	Yes	No	-

1.2 List of parameters

	08	Deviation setpoint/actual speed	No	Yes
	09	Control request	Yes	No
		Maximum speed reached	Yes	No
		I, M, P limit reached	No	Yes
		Motor holding brake open	Yes	No
		Alarm motor overtemperature	No	Yes
		Motor rotates forwards	Yes	No
	15	Alarm drive converter overload	No	Yes
Caution:	p2080 is used to define the signal sources of the PROFIdrive status word interconnection.			
Note:	Re bit 03:			
	This signal is inverted if it is interconnected to a digital output.			
	Re r0052:			
	The status bits have the following sources:			
	Bit 00: r0899 Bit 0			
	Bit 01: r0899 Bit 1			
	Bit 02: r0899 Bit 2			
	Bit 03: r2139 Bit 3 (or r1214.10 for p1210>0)			
	Bit 04: r0899 Bit 4			
	Bit 05: r0899 Bit 5			
	Bit 06: r0899 Bit 6			
	Bit 07: r2139 Bit 7			
	Bit 08: r2197 Bit 7			
	Bit 09: r0899 Bit 7			
	Bit 10: r2197 Bit 6			
	Bit 11: r0056 Bit 13 (negated)			
	Bit 12: r0899 Bit 12			
	Bit 13: r2135 Bit 14 (negated)			
	Bit 14: r2197 Bit 3			
	Bit 15: r2135 Bit 15 (negated)			

r0053.0... 11 CO/BO: Status word $2 /$ ZSW 2

Access level: 2 Calculated:
Can be changed: -
Units group: -
Min

Description: Display and BICO output for status word 2.

Bit	Signal name	1 signal	0 signal	
00	DC braking active	Yes	No	
01	$\mid \mathrm{n}$ _act\| > p1226 (n_standstill)	Yes	No	
02	\|n_act	> p1080 (n_min)	Yes	No
03	I_act >= p2170	Yes	No	
04	\|n_act	> p2155	Yes	No
05	$\mid n_{\sim}$ act\| <= p2155	Yes	No	
06	$\mid \mathrm{n}$ _act\| >= r1119 (n_set)	Yes	No	
07	Vdc <= p2172	Yes	No	
08	Vdc > p2172	Yes	No	
09	Ramp-up/ramp-down completed	Yes	No	
10	Technology controller output at the lower limit	Yes	No	
11	Technology controller output at the upper limit	Yes	No	
p2081 is used to define the signal sources of the PROFIdrive status word interconnection				
The following status bits are displayed in r0053:				
Bit 00: r1239 Bit 8				
Bit 01: r2197 Bit 5 (negated)				
Bit 02: r2197 Bit 0 (negated)				
Bit 03: r2197 Bit 8				

Bit 04: r2197 Bit 2
Bit 05: r2197 Bit 1
Bit 06: 2197 Bit 4
Bit 07: r2197 Bit 9
Bit 08: r2197 Bit 10
Bit 09: r1199 Bit 2 (negated)
Bit 10: r2349 Bit 10
Bit 11: r2349 Bit 11

r0054.0... 15	CO/BO: Control word $1 /$ STW 1			
	Access level: 2	Calculated: -	Data type: Unsigned16	
	Can be changed: - S	Scaling: -	Dyn. index: -	
	Units group: - Unis	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	- -	-	-	
Description:	Displays control word 1.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 ON/OFF1	Yes	No	-
	01 OC / OFF2	Yes	No	-
	02 OC / OFF3	Yes	No	-
	03 Operation enable	Yes	No	-
	04 Ramp-function generator enable	Yes	No	-
	05 Continue ramp-function generator	r Yes	No	-
	06 Speed setpoint enable	Yes	No	-
	07 Acknowledge fault	Yes	No	-
	08 Jog bit 0	Yes	No	3030
	09 Jog bit 1	Yes	No	3030
	10 Master ctrl by PLC	Yes	No	-
	11 Direction reversal (setpoint)	Yes	No	-
	13 Motorized potentiometer raise	Yes	No	-
	14 Motorized potentiometer lower	Yes	No	-
	15 CDS bit 0	Yes	No	-
Note:	The following control bits are displayed in r0054:			
	Bit 00: r0898 Bit 0			
	Bit 01: r0898 Bit 1			
	Bit 02: r0898 Bit 2			
	Bit 03: r0898 Bit 3			
	Bit 04: r0898 Bit 4			
	Bit 05: r0898 Bit 5			
	Bit 06: r0898 Bit 6			
	Bit 07: r2138 Bit 7			
	Bit 08: r0898 Bit 8			
	Bit 09: r0898 Bit 9			
	Bit 10: r0898 Bit 10			
	Bit 11: r1198 Bit 11			
	Bit 13: r1198 Bit 13			
	Bit 14: r1198 Bit 14			
	Bit 15: r0836 Bit 0			

1.2 List of parameters

r0055.0.. 15	CO/BO: Supplementary control word / Suppl STW			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	促	-	-	
Description:	Displays supplementary control word.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Fixed setpoint bit 0	Yes	No	-
	01 Fixed setpoint bit 1	Yes	No	-
	02 Fixed setpoint bit 2	Yes	No	-
	03 Fixed setpoint bit 3	Yes	No	-
	04 DDS select. bit 0	Yes	No	-
	05 DDS select. bit 1	Yes	No	-
	06 Quick Stop active	Yes	No	-
	08 Technology controller enable	Yes	No	-
	09 DC braking enable	Yes	No	-
	11 Droop enable	Yes	No	-
	12 Torque control active	Yes	No	-
	13 External fault 1 (F07860)	No	Yes	-
	15 CDS bit 1	Yes	No	-
Note:	The following control bits are displayed in r0055:			
	Bit 00: r1198 Bit 0			
	Bit 01: r1198 Bit 1			
	Bit 02: r1198 Bit 2			
	Bit 03: r1198 Bit 3			
	Bit 04: r0837 Bit 0			
	Bit 05: r0837 Bit 1			
	Bit 08: r2349 Bit 0 (negated)			
	Bit 09: r1239 Bit 11			
	Bit 11: r1406 Bit 11			
	Bit 12: r1406 Bit 12			
	Bit 13: r2138 Bit 13 (negated)			
	Bit 15: r0836 Bit 1			

r0056.0... 15 CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl
Access level: $3 \quad$ Calculated: - Data type: Unsigned16
Can be changed: - Scaling: - Dyn. index: -

Units group: - Unit selection: - Func. diagram: -
Min Max Factory setting

Description: Displays the status word of the closed-loop control.

Bit field:	Bit	Signal name	1 signal	0 signal
	00	Initialization completed	Yes	No
	01	De-magnetizing completed	Yes	No
	02	Pulse enable present	Yes	No
	03	Soft starting present	Yes	No
	04	Magnetizing completed	Yes	No
	05	Voltage boost when starting	Active	Active
	06	Acceleration voltage	Yes	Inactive

1.2 List of parameters

r0065	Slip frequency / f_Slip		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: 2_1	Unit selection: p0505	Func. diagram: 1710, 6310, 6727, 6730, 6732
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the slip frequency for induction motors (ASM).		
r0066	CO: Output frequency / f_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 2_1	Unit selection: p0505	Func. diagram: 1690, 6310, 6730, 6731, 6799
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description: Dependency:	Display and connector output for the output frequency of the power unit. Refer to: r0024		
Note:	The output frequency is available smoothed (r0024) and unsmoothed (r0066).		
	For vector control and operation with encoder ($0400>0$), the following applies:		
	The parameter value corresponds to the actual encoder speed.		
r0067	CO: Output current maximum / I_outp max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6300, 6640, 6724
	Min	Max	Factory setting
	- [Arms]	- [Arms]	
Description:	Displays the maximum output current of the power unit.		
Dependency:	The maximum output current is determined by the parameterized current limit and the motor and converter thermal protection.		
	Refer to: p0290, p0640		
r0068[0...1]	CO: Absolute current actual value / I_act abs val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 1690, 6714, 6799, 7017, 8014, 8017, 8018
	Min	Max	Factory setting
	- [Arms]	- [Arms]	
Description:	Displays actual absolute current.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Refer to: r0027		
Notice:	The value is updated with the current controller sampling time.		
Note:	Absolute current value $=\operatorname{sqrt}\left(\mathrm{Iq}^{\wedge} 2+\mathrm{ld}^{\wedge} 2\right)$		
	The absolute value of the current actual value is available smoothed (r0027 with 300 ms , r0068[1] with p0045) and unsmoothed (r0068[0]).		

r0069[0...6]	CO: Phase current actual value / I_phase act value		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_5	Unit selection: p0505	Func. diagram: 1630, 5730, 6714, 6730, 6731, 8850, 8950
	Min	Max	Factory setting
	- [A]	- [A]	- [A]
Description:	Displays the measured actual phase currents as peak value.		
Index:	$\begin{aligned} & {[0]=\text { Phase U }} \\ & {[1]=\text { Phase V }} \\ & {[2]=\text { Phase W }} \\ & {[3]=\text { Phase U offset }} \\ & {[4]=\text { Phase V offset }} \\ & {[5]=\text { Phase W offset }} \\ & {[6]=\text { Total U, V, W }} \end{aligned}$		
Note:	In indices $3 \ldots 5$, the offset currents of the 3 phases, which are added to correct the phase currents, are displayed.		
r0070	CO: Actual DC link voltage / Vdc act val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_2	Unit selection: p0505	Func. diagram: 6723, 6724, 6730, 6731, 6799
	Min	Max	Factory setting
	- [V]	- [V]	
Description:	Displays the measured actual value of the DC link voltage.		
Dependency:	Refer to: r0026		
Notice:	When measuring a DC link voltage $<200 \mathrm{~V}$, for the Power Module (e.g. PM240) a valid measured value is not supplied. In this case, when an external 24 V power supply is connected, a value of approx. 24 V is displayed in the display parameter.		
Note:	The DC link voltage is available smoothed (r0026) and unsmoothed (r0070).		
r0071	Maximum output voltage / U_output max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 1710, 6300, 6640, 6722, 6723, 6724, 6725, 6727
	Min		Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the maximum output voltage.		
Dependency:	The maximum output voltage depends on the actual DC link voltage (r0070) and the maximum modulation depth (p 1803).		
Note:	As the (driven) motor load increases, the maximum output voltage drops as a result of the reduction in DC link voltage.		
r0072	CO: Output voltage / U_output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 1630, 6730, 6731, 6799
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	
Description:	Displays the actual output voltage of the power unit.		
Dependency:	Refer to: r0025		
Note:	The output voltage is available smoothed (r0025) and unsmoothed (r0072).		

r0073	Maximum modulation depth / Modulat_depth max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 6723, 6724
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the maximum modulation depth.		
Dependency:	Refer to: p1803		
r0074	CO: Modulat_depth / Modulat_depth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 5730, 6730, 6731, 6799, 8940, 8950
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual modulation depth.		
Dependency:	Refer to: r0028		
Note:	For space vector modulation, 100% corresponds to the maximum output voltage without overcontrol.		
	Values above 100% indicate an overcontrol condition - values below 100% have no overcontrol.		
	The phase voltage (phase-to-phase, rms) is calculated as follows:(r0074 \times r0070) / (sqrt(2) $\times 100 \%$).		
	The modulation depth is available smoothed (r0028) and unsmoothed (r0074).		
r0075	CO: Current setpoint field-generating / Id_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index:-
	Units group: 6_2	Unit selection: p0505	Func. diagram: 1630, 5714, 5722, 6714
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the field-generating current setpoint (ld_set).		
Note:	This value is irrelevant for the U/f control mode.		
r0076	CO: Current actual value field-generating / Id_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 1630, 1710, 5714, 5730, 6714, 6799
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the field-generating current actual value (ld_act).		
Dependency:	Refer to: r0029		
Note:	This value is irrelevant for the U/f control mode.		
	The field-generating current actual value is available smoothed (r0029) and unsmoothed (r0076).		
r0077	CO: Current setpoint torque-generating / Iq_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 1630, 1774, 5714, 6710, 6714, 6719
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the torque/force generating current setpoint.		

Note: \quad This value is irrelevant for the U/f control mode.

r0078	CO: Current actual value torque-generating / Iq_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 1710, 6310, 6714, 6799
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the torque-generating current actual value (Iq_act).		
Dependency:	Refer to: r0030		
Note:	This value is irrelevant for the U/f control mode.		
	The torque-generating current actual value is available smoothed (r0030 with 300 ms) and unsmoothed (r0078).		

r0079	CO: Torque setpoint / M_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 1700, 1710, 6030, 6060, 6710, 8012
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for the torque setpoint at the output of the speed controller.		
r0080[0...1]	CO: Torque actual value / M_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6714, 6799
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Display and connector output for actual torque value.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with p0045 }} \end{aligned}$		
Dependency:	Refer to: r0031, p0045		
Note:	The value is available smoothed (r0031 with 100 ms , r0080[1] with p0045) and unsmoothed (r0080[0]).		
r0081	CO: Torque utilization / M_Utilization		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the torque utilization as a percentage.		
	The torque utilization is obtained from the required smoothed torque referred to the torque limit.		
Dependency:	This parameter is only available for vector control. For U/f control r0081 $=0 \%$. Refer to: r0033		
Note:	The torque utilization is available smoothed (r0033) and unsmoothed (r0081).		
	The torque utilization is obtained from the required torque referred to the torque limit as follows: - Positive torque: r0081 = (r0079 / r1538) * 100%		
	- Negative torque: r0081 = (-r0079 / -r1539) * 100 \%		

1.2 List of parameters

r0082[0...2]	CO: Active power actual value / P_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: r2004	Dyn. index:-
	Units group: 14_5	Unit selection: p0505	Func. diagram: 6714, 6799
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the instantaneous active power.		
Index:	[0] = Unsmoothed		
	[1] = Smoothed with p0045		
	[2] = Electric power		
Dependency:	Refer to: r0032		
Note:	The mechanical active power is available smoothed (r0032 with 100 ms , r0082[1] with p0045) and unsmoothed (r0082[0]).		

r0083	CO: Flux setpoint / Flex setp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 5722
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$
Description:	Displays the flux setpoint.		

r0084[0...1]	CO: Flux actual value / Flux act val		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6730,6731
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$

Description: Displays the flux actual value.

Index: \quad| $[0]=$ Unsmoothed | |
| :--- | :--- |
| | $[1]=$ Smoothed |

r0087	CO: Actual power factor / Cos phi act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual active power factor.		
	This value refers to the electrical power of the basic fundamental signals at the output terminals of the converter.		
r0089[0...2]	Actual phase voltage / U_phase act val		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_3	Unit selection: p0505	Func. diagram: 6719
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the actual phase voltage.		
Index:	$\begin{aligned} & {[0]=\text { Phase } U} \\ & {[1]=\text { Phase } V} \\ & {[2]=\text { Phase } \mathrm{W}} \end{aligned}$		
Note:	The values are deter	ransistor power-on durati	

1.2 List of parameters

Dependency: For standard induction motors (p0301 > 10000), bit 0 is automatically preassigned the connection type of the selected data set.
For $\mathrm{p} 0100>0(60 \mathrm{~Hz}$ rated motor frequency $)$, it is not possible to select bit 1 .
Refer to: p0304, p0305, p1082

Note:

Re bit 0:
When changing the bits, the rated motor voltage p0304 and the rated motor current p0305 are automatically converted to the selected connection type (star or delta connection).
Re bit 1 :
Operation with 87 Hz is only possible in the delta connection type. When selected, the maximum speed p1082 is automatically preassigned for a maximum output frequency of 87 Hz .

p0170	Number of Command Data Sets (CDS) / CDS count		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: C(15)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8560
	Min	Max	Factory setting
	2	4	2
Description:	Sets the number of Command Data Sets (CDS).		
Dependency:	Refer to: p0010, r3996		
Notice:	When the data sets are created, short-term communication interruptions may occur.		
Note:	It is possible to toggle between command parameters (BICO parameters) using this data set changeover.		
p0180	Number of Drive Data Sets (DDS) / DDS count		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: C(15)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8565
	Min	Max	Factory setting
	1	4	1
Description:	Sets the number of Drive Data Sets (DDS).		
Dependency:	Refer to: p0010, r3996		
Notice:	When the data sets are created, short-term communication interruptions may occur.		
r0197[0...1]	Bootloader version / Bootloader vers		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the bootloader version.		
	Index 0:		
	Displays the bootloader version.		
	Index 1:		
	Displays the bootloader version 3 (for CU320-2 and CU310-2)		
	Value 0 means that boot loader 3 is not available.		
Dependency:	Refer to: r0018, r0198		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		

r0198[0...1]	BIOS/EEPROM data version / BIOS/EEPROM vers		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the BIOS and EEPROM data version. r0198[0]: BIOS version r0198[1]: EEPROM data version		
Dependency:	Refer to: r0018, r0197		
Note:	Example:		
	The value 1010100 should be interpreted as V01.01.01.00.		
p0199[0...24]	Drive object name / DO name		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: C	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	65535	0
Description:	Freely assignable name for a drive object.		
	In the commissioning software, this name cannot be entered using the expert list, but is specified in the configuration assistant. The object name can be subsequently modified in the Project Navigator using standard Windows resources.		
Note:	The parameter is not influenced by setting the factory setting.		
r0200[0...n]	Power unit code number actual / PU code no. act		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: PDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the unique code number of the power unit.		
Note:	r0200 $=0$: No power unit data found		
p0201[0...n]	Power unit code number / PU code no		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: C(2)	Scaling: -	Dyn. index: PDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	65535	0
Description:	Sets the actual code number from r0200 to acknowledge the power unit being used. When commissioned for the first time, the code number is automatically transferred from r0200 into p0201.		
Note:	The parameter is used to identify when the drive is being commissioned for the first time. The power unit commissioning can only be exited ($\mathrm{p} 0201=\mathrm{r} 0200$), if the actual and acknowledged code numbers are identical (p0010 $=2$).		
	When the code number is changed, the connection voltage (p 0210) is checked and, if necessary, adjusted.		

1.2 List of parameters

r0203[0...n]	Actual power unit type / PU actual type					
	Access level: 3		Calculated: -		Data type: Integer16	
	Can be changed: -		Scaling: -		Dyn. index: PDS	
	Units group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	2		400		-	
Description:	Displays the type of power unit found.					
Value:	2: MICROMASTER 440					
	3: MICROMAS					
	4: MICROMAS					
	5: MICROMAS					
	6: MICROMAS					
	7: MICROMAS					
	100: SINAMICS S					
	101: SINAMICS S					
	102: SINAMICS S					
	103: SINAMICS S					
	112: PM220 (SIN					
	113: PM230 (SIN					
	114: PM240 (SIN					
	115: PM250 (SIN		120)			
	116: PM260 (SIN					
	118: SINAMICS G					
	120: PM340 (SIN					
	130: PM250D (SI					
	133: SINAMICS G					
	135: SINAMICS P					
	136: SINAMICS P					
	137: SINAMICS P					
	138: SINAMICS G					
	150: SINAMICS G					
	151: PM330 (SIN					
	200: SINAMICS G					
	250: SINAMICS S					
	260: SINAMICS M					
	300: SINAMICS G					
	350: SINAMICS					
	400: SINAMICS					
Note:	For parallel circuit configurations, the parameter index is assigned to a power unit.					
r0204[0...n]	Power unit hardware properties / PU HW property					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dyn. index: PDS	
	Units group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the properties supported by the power unit hardware.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	01	RFI filter availa		Yes	No	-
	07	F3E regenerat supply	the line	Yes	No	-
	08	Internal Braking		Yes	No	-
	12	Safe Brake Co	orted	No	Yes	-
	13	Safety Integrat		Yes	No	-
	14	Internal LC out		Yes	No	-
	15	Line voltage		1-phase	3-phase	-

p0205	Power unit application / PU application		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,2)$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	The duty cycles can be overloaded provided that the drive converter is operated with its base load current before and after the overload. This is based on a load duty cycle of 300 s .		
Value:	0 : Load duty cycle with high overload for vector drives 1: Load duty cycle with low overload for vector drives		
Dependency:	Refer to: r3996		
Notice:	The parameter value is not reset when the factory setting is restored (see p0010 $=30$, p0970).		
	When the power unit use is changed, short-term communication interruptions may occur.		
Note:	When the parameter is changed, all of the motor parameters (p0305 ... p0311), the technological application (p0500) and the control mode (p 1300) are pre-assigned according to the selected application. The parameter has no influence when calculating the thermal overload.		
	p0205 can only be changed to the settings that are saved in the power unit EEPROM.		
r0206[0...4]	Rated power unit power / PU P_rated		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: 14_6	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the rated power unit power for various load duty cycles.		
Index:	[0] = Rated value [1] = Load duty cycle with [2] = Load duty cycle with h [3] = Reserved [4] = Reserved	$\begin{aligned} & \mathrm{dd} \\ & \mathrm{ad} \end{aligned}$	
Dependency:	IECdrives (p0100 = 0): Units kW		
	NEMA drives (p0100 = 1): Units hp		
	Refer to: p0100, p0205		
r0207[0...4]	Rated power unit current / PU PI_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8014
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the rated power unit power for various load duty cycles.		
Index:	[0] = Rated value [1] = Load duty cycle with [2] = Load duty cycle with h [3] = Reserved [4] = Reserved	$\begin{aligned} & \mathrm{dd} \\ & \mathrm{ad} \end{aligned}$	
Dependency:	Refer to: p0205		

1.2 List of parameters

r0208	Rated power unit line supply voltage / PU U_rated		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the rated line supply voltage of the power unit.		
	$\text { r0208 = } 400: 380-480 \mathrm{~V}+/-10 \%$		
	r0208 = 500:500-600 V +/-10 \%		
	r0208 = 690 : 660-690 V +/-10 \%		
r0209[0...4]	Power unit maximum current / PU I_max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 8750, 8850, 8950
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the maximum output current of the power unit.		
Index:	[0] = Catalog		
	[1] = Load duty cycle with low overload		
	[2] = Load duty cycle with high overload		
	$[3]=$ Reserved[4] $=$ Reserved		
Dependency:	Refer to: p0205		
p0210	Drive unit line supply voltage / V_connect		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(2), \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1 [V]	63000 [V]	400 [V]
Description:	Sets the drive unit supply voltage (rms value of the phase-to-phase line supply voltage).		
Dependency:	Set p1254, p1294 (automatic detection of the Vdc switch-on levels) $=0$.		
	The switch-in thresholds of the Vdc_max controller are then directly determined using p0210.		
Warning:	In the case of regenerative power units (PM250, PM260), the regenerative power limit for U/f control current limitation control is calculated as a proportion of the supply voltage p0210. Therefore, p 0210 should not be set to a value higher than the actual line voltage.		
Caution:	If the line supply voltage is higher than the entered value, the Vdc controller may be automatically de-activated in some cases to prevent the motor from accelerating. In this case, an appropriate alarm is output.		
Note:	Setting ranges for p0210 as a function of the rated power unit voltage:		
	U_rated = 230 V :		
	- p0210 = $200 . . .240 \mathrm{~V}$		
	U_rated $=400 \mathrm{~V}$:		
	- p0210 = $380 . . .480 \mathrm{~V}$		
	U_rated $=500 \mathrm{~V}$:		
	- p0210 $=500 \ldots 600 \mathrm{~V}$		
	U_rated $=690 \mathrm{~V}$:		
	- p0210 = 660 ... 690 V		
	The pre-charging switch-in threshold for the DC link voltage (Vdc) is calculated from p0210:Vdc_pre $=$ p 0210 * 0.82 * 1.35		

p0290	Power unit overload response / PU overld response	
	Access level: 3	Calculated: -
Can be changed: T	Scaling: -	Data type: Integer16

p0294	Power unit alarm with I2t overload / PU I2t alrm thresh		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8014
	Min	Max	Factory setting
	10.0 [\%]	100.0 [\%]	95.0 [\%]
Description:	Sets the alarm threshold for the 12t power unit overload.		
	If this threshold is exceeded, an overload alarm is generated and the system responds as parameterized in p0290.		
Dependency:	Refer to: r0036, p0290		
Note:	The I2t fault threshold is 100%. If this value is exceeded, fault F30005 is output.		
p0295	Fan run-on time / Fan run-on time		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [s]	600 [s]	0 [s]
Description:	Sets the fan run-on time after the pulses for the power unit have been canceled.		
Note:	- Under certain circumstances, the fan can continue to run for longer than was set (e.g. as a result of the excessively high heat sink temperature).		
	- For values less than 1 s , a 1 s run on time for the fan is active.		
	- for a PM230 power unit,	the parameter is in	

r0296	DC link voltage undervoltage threshold / Vdc U_lower_thresh		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Threshold to detect a DC link undervoltage.		
	If the DC link voltage falls below this threshold, the drive unit is tripped due to a DC link undervoltage condition.		
r0297	DC link voltage overvoltage threshold / Vdc U_upper_thresh		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8750, 8760, 8850, 8864, 8950, 8964
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	If the DC link voltage excee	shold specified her	tripped due to DC link overvoltage.
p0300[0...n]	Motor type selection / Mot type sel		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	0	177	0
Description:	Selecting the motor type.		
	The first digit of the parameter value always defines the general motor type and corresponds to the third-party motor belonging to a motor list: 1 = Rotating induction motor		

1.2 List of parameters

p0304[0...n]	Rated motor voltage / Mot U_rated		
	Access level: 1	Calculated: -	Sata type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Unit selection: -	Dyn. index: MDS

p0305[0...n]	Rated motor current / Mot I_rated		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the rated motor current (rating plate).		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Notice:	If p0305 is changed during quick commissioning ($\mathrm{p} 0010=1$), then the maximum current p0640 is pre-assigned accordingly.		
Note:	When the parameter value is entered the connection type of the motor (star-delta) must be taken into account.		
	Once the Control Unit has booted for the first time or if the factory settings have been restored, the parameter is preassigned to match the power unit.		

1.2 List of parameters

	The rated frequency is restricted to values between 1.00 Hz and 650.00 Hz . Refer to: p0311, r0313, p0314
Caution:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
Notice:	If p0310 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=$ 3).
Note:	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.
p0311[0...n]	Rated motor speed / Mot n_rated
	Access level: 1 Calculated: - Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$ Scaling: - Dyn. index: MDS
	Units group: - Unit selection: - Func. diagram:
	Min Max Factory setting
	0.0 [rpm] 210000.0 [rpm] 0.0 [rpm]
Description:	Sets the rated motor speed (rating plate).
	For p0311 = 0, the rated motor slip of induction motors is internally calculated and displayed in r0330.
	It is especially important to correctly enter the rated motor speed for vector control and slip compensation for U/f control.
Dependency:	If p 0311 is changed and for $\mathrm{p} 0314=0$, the pole pair (r0313) is re-calculated automatically.
	Refer to: p0310, r0313, p0314
Caution:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.
Notice:	If p0311 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated with quick commissioning, is pre-assigned accordingly. This is not the case when commissioning the motor ($\mathrm{p} 0010=$ $3)$.
Note:	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.

r0313[0...n]	Motor pole pair number, actual (or calculated)/Mot PolePairNo act		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 5300
	Min	Max	Factory setting
	-	-	-

Description:	Displays the number of motor pole pairs. The value is used for internal calculations.
	r0313 = 1: 2-pole motor
	r0313 = 2: 4-pole motor, etc.
Dependency:	For p0314>0, the entered value is displayed in r0313.
	For $\mathrm{p} 0314=0$, the pole pair number (r 0313) is automatically calculated from the rated power (p 0307), rated frequency (p 0310) and rated speed (p 0311).
	Refer to: p0307, p0310, p0311, p0314
Note:	For the automatic calculation, the pole pair number is set to the value of 2 if the rated speed or the rated frequency is zero.

p0314[0...n]	Motor pole pair number / Mot pole pair No.		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: C(1, 3)	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	0
Description:	Sets the motor pole pair number.		
	p0314 $=1: 2$-pole motor		
	p0314 $=2: 4$-pole motor, etc.		

Dependency:	For $\mathrm{p} 0314=0$, the pole pair number is automatically calculated from the rated frequency $(\mathrm{p} 0310)$ and the rated
speed $(\mathrm{p} 0311)$ and displayed in r0313.	
Notice:	If p 0314 is changed during quick commissioning ($\mathrm{p} 0010=1$), the maximum speed p 1082 , which is also associated
	with quick commissioning, is pre-assigned accordingly.
For induction motors, the value need only be input if the rated data of a generator is entered therefore resulting in a	
negative rated slip. In this case, the number of pole pairs in r0313 is too low by 1 and must be manually corrected.	

p0322[0...n]	Maximum motor speed / Mot n_max		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3)$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [rpm]	210000.0 [rpm]	0.0 [rpm]
Description:	Sets the maximum motor speed.		
Dependency:	Refer to: p1082		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Notice:	If p0322 is changed during with quick commissioning,	missioning (p0010 gned accordingly.	speed p1082, which is also associated

p0326[0...n]	Motor stall torque correction factor / Mot M_stall_corr		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	5 [\%]	300 [\%]	100 [\%]
Description:	Sets the correction factor for the stall torque/force at a 600 V DC link voltage.		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When quick commissioning is selected (p0300).	with p3900 > 0, the	reset if a catalog motor has not been

r0330[0...n]	Rated motor slip / Mot slip_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the rated motor slip.		
Dependency:	The rated slip is calculated from the rated frequency, rated speed and number of pole pairs. Refer to: p0310, p0311, r0313		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0331[0...n]	Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 5722, 6722, 6724
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Induction motor:		
	Displays the rated magnetizing current from p0320.		
	For $\mathrm{p} 0320=0$, the internally calculated magnetizing current is displayed.		
	Synchronous motor:		
	Displays the rated short-circuit current from p0320.		
Dependency:	If p0320 was not entered, then the parameter is calculated from the rating plate parameters.		

r0332[0...n]	Rated motor power factor / Mot cos_phi_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the rated power factor for induction motors.		
	For IEC motors, the following applies ($\mathrm{p} 0100=0$):		
	For p0308 = 0, the internally-calculated power factor is displayed.		
	For p0308>0, this value is displayed.		
	For NEMA motors, the following applies ($\mathrm{p} 0100=1$):		
	For p0309 $=0$, the internally-calculated power factor is displayed.		
	For p0309 > 0, this value is converted into the power factor and displayed.		
Dependency:	If p0308 is not entered, the parameter is calculated from the rating plate parameters.		
Note:	The parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		
r0333[0...n]	Rated motor torque / Mot M_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: 7_4	Unit selection: p 0100	Func. diagram: -
	Min	Max	Factory setting
	- [Nm]		- [Nm]
Description:	Displays the rated motor torque.		
Dependency:	IEC drives (p0100 = 0): unit Nm		
	NEMA drives ($\mathrm{p} 0100=1$): unit lbf ft		
Note:	For induction motors, r0333 is calculated from p0307 and p0311.		
	For synchronous motors, r0333 is calculated from p0305, p0316, p0327 and p0328.		

1.2 List of parameters

```
p0340 = 4
--> p1290, p1292, p1293, p1338, p1339, p1340, p1341, p1345, p1346, p1461, p1463, p1464, p1465, p1470, p1472,
p1703, p1715, p1717, p1740, p1756, p1764, p1767, p1780, p1781, p1783, p1785, p1786, p1795
p0340 = 5
--> p1037, p1038, p1520, p1521, p1530, p1531, p1574, p1802, p1803, p2140, p2142, p2148, p2150, p2157, p2159,
p2161, p2162, p2163, p2164, p2170, p2175, p2177, p2179, p2194
Note: p0340=1 contains the calculations of p0340 = 2, 3, 4, 5.
p0340 = 2 calculates the motor parameters (p0350 ... p0360).
p0340 = 3 contains the calculations of p0340 = 4,5.
p0340 = 4 only calculates the controller parameters.
p0340 = 5 only calculates the controller limits.
When quick commissioning is exited using p3900 > 0, p0340 is automatically set to 1.
At the end of the calculations, p0340 is automatically set to 0.
```

p0341[0...n]	Motor moment of inertia / Mot M_mom of inert		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: 25_1	Unit selection: p0100	Func. diagram: 1700, 5042, 5210, 6030, 6031
	Min	Max	Factory setting
	0.000000 [kgm^{2}]	$100000.000000\left[\mathrm{kgm}^{2}\right]$	0.000000 [kgm^{2}]
Description:	Sets the motor moment of inertia (without load).		
Dependency:	IEC drives ($\mathrm{p} 0100=0$): unit $\mathrm{kg} \mathrm{m}{ }^{\wedge} 2$		
	NEMA drives ($\mathrm{p} 0100=1$): unit lb ft^2		
	The parameter value is included, together with p0342, in the rated starting time of the motor.		
	Refer to: p0342, r0345		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The product of p0341 * p0342 is used when the speed controller (p0340 $=4$) is calculated automatically.		

p0342[0...n]	Ratio between the total and motor moment of inertia / Mot Momlnert Ratio		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: $1700,5042,5210$,
		6030,6031	
	Max	Factory setting	
	1.000	10000.000	1.000

Description:	Sets the ratio between the total moment of inertia/mass (load + motor) and the intrinsic motor moment of inertia/mass (no load).		
Dependency:	This means that together with p0341, the rated starting (accelerating time) of the motor is calculated for a vector		
drive.		\quad	Refer to: p0341, r0345
:---			
Note:	\quad	The product of $00341^{*} \mathrm{p} 0342$ is used when the speed controller $(\mathrm{p} 0340=4)$ is calculated automatically.	
:---			

r0343[0...n]	Rated motor current identified / Mot I_rated ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.00[A r m s]$	$10000.00[A r m s]$	$-[A r m s]$

Description: Displays the identified rated motor current.

r0345[0...n]	Nominal motor starting time / Mot t_start_rated		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [s]	- [s]	- [s]
Description:	Displays the rated motor starting time.		
	This time corresponds to the time from standstill up to reaching the motor rated speed and the acceleration with motor rated torque (r0333).		
Dependency:	Refer to: r0313, r0333, p0341, p0342		

p0346[0...n]	Motor excitation build-up time / Mot t_excitation		
	Access level: 3	Calculated: p0340 $=1,3$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	20.000 [s]	0.000 [s]
Description:	Sets the excitation build-up time of the motor.		
	This involves the delay time between enabling the pulses and enabling the ramp-function generator. The induction motor is magnetized during this time.		
Caution: 1	If there is insufficient magnetization under load or if the acceleration rate is too high, then an induction motor can stall (refer to the note).		
Note:	The parameter is calculated using p $0340=1,3$.		
	For induction motors, the result depends on the rotor time constant (r0384). If this time is excessively reduced, this can result in an inadequate magnetizing of the induction motor. This is the case if the current limit is reached while building up magnetizing. For induction motors, the parameter cannot be set to 0 s (internal limit: 0.1^{*} r0384).		
	For permanent-magnet synchronous motors and vector control, the value depends on the stator time constant (r0386). Here, it defines the time to establish the current for encoderless operation immediately after the pulses have been enabled.		

p0347[0...n]	Motor de-excitation time / Mot t_de-excitat		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$0.000[\mathrm{~s}]$	$20.000[\mathrm{~s}]$	$0.000[\mathrm{~s}]$

Description: Sets the de-magnetizing time (for induction motors) after the inverter pulses have been canceled.
The inverter pulses cannot be switched in (enabled) within this delay time.

1.2 List of parameters

Note:
The parameter is calculated using p0340 = 1, 3.
For induction motors, the result depends on the rotor time constant (r0384).
if this time is shortened too much, then this can result in an inadequate de-magnetizing of the induction motor and in
an overcurrent condition when the pulses are subsequently enabled (only when the flying restart function is activated
and the motor is rotating).

p0350[0...n]	Motor stator resistance cold / Mot R_stator cold		
	Access level: 3	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00000 [ohm]	2000.00000 [ohm]	0.00000 [ohm]
Description:	Sets the stator resistance of the motor at ambient temperature p0625 (phase value).		
Dependency:	Refer to: p0625, r1912		
Notice:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The motor identification routin resistance (p0352).	mines the stator resistance	tal stator resistance minus the cable

p0352[0...n]	Cable resistance / R_cable		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Max selection: -	Func. diagram: -
	Min	$120.00000[\mathrm{ohm}]$	Factory setting
	$0.00000[\mathrm{ohm}]$	0.00000 [ohm]	
Description:	Resistance of the power cable between the power unit and motor.		
Caution:	The cable resistance should be entered prior to motor data identification. If it is used subsequently, the difference by		
	which p0352 was changed must be subtracted from the stator resistance p0350 or motor data identification must be		
	repeated.		

Note: \quad The parameter influences the temperature adaptation of the stator resistance.
The motor identification sets the cable resistance to 20% of the measured total resistance if p0352 is zero at the time that the measurement is made. If p0352 is not zero, then the value is subtracted from the measured total stator resistance to calculate stator resistance p0350. In this case, p0350 is a minimum of 10% of the measured value. The cable resistance is reset when quick commissioning is exited with p3900 >0.

p0354[0...n]	Motor rotor resistance cold / Mot R_r cold		
	Calculated: p0340 $=1,2$	Data type: FloatingPoint32	
	Access level: 3	Scaling: -	Dyn. index: MDS

p0360[0...n]	Motor magnetizing inductance / Mot Lh		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,2$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6727
	Min	Max	Factory setting
	0.00000 [mH]	$10000.00000[\mathrm{mH}]$	0.00000 [mH]
Description:	Sets the magnetizing inductance of the motor.		
	This parameter value is automatically calculated using the motor model ($p 0340=1,2$) or using the motor identification routine (p1910).		
Caution:	When selecting a catalog motor (p0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The parameter is not used for synchronous motors (p0300 = 2).		

p0362[0...n]	Motor saturation characteristic flux 1 / Mot saturat.flux 1		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	60.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 1st value pair of the characteristic.		
	Sets the first flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100\%).		
Dependency:	The following applies for the flux values:$\text { p0362 < p } 0363 \text { < p0364 < p0365 }$		
	Refer to: p0366		
Note:	For induction motors, p0362 $=100 \%$ corresponds to the rated motor flux.		
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p 0300).		

p0363[0...n]	Motor saturation characteristic flux 2 / Mot saturat.flux 2		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	85.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 2 nd value pair of the characteristic.		
	Sets the second flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100\%).		
Dependency:	The following applies for the flux values: p0362 < p0363 < p0364 < p0365		
	Refer to: p0367		
Note:	For induction motors, p0363 = 100% corresponds to the rated motor flux.		
	When quick commissioning is exited with $\mathrm{p} 3900>0$, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0364[0...n]	Motor saturation characteristic flux 3 / Mot saturat.flux 3		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	115.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 3rd value pair of the characteristic. Sets the third flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100 \%).		
Dependency:	The following applies for the p0362 < p0363 < p0364 < p0 Refer to: p0368		
Note:	For induction motors, p0364 When quick commissioning is selected (p0300).	corresponds to the with p3900 > 0, the	reset if a catalog motor has

p0365[0...n]	Motor saturation characteristic flux 4 / Mot saturat.flux 4		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	10.0 [\%]	300.0 [\%]	125.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the y coordinate (flux) for the 4 th value pair of the characteristic. Sets the fourth flux value of the saturation characteristic as a [\%] referred to the rated motor flux (100%).		
Dependency:	The following applies for the flux values:$\text { p0362 < p0363 < p0364 < p } 0365$		
	Refer to: p0369		
Note:	For induction motors, p0365 = 100% corresponds to the rated motor flux.		
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0366[0...n]	Motor saturation characteristic I_mag 1/ Mot sat. I_mag 1		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723,6726
	Min	Max	Factory setting
	$5.0[\%]$	$800.0[\%]$	$50.0[\%]$

Description: The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.
This parameter specifies the x coordinate (magnetizing current) for the 1st value pair of the characteristic.
Sets the first magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).
Dependency: The following applies for the magnetizing currents:
p0366 < p0367 < p0368 < p0369
Refer to: p0362
Note: \quad When quick commissioning is exited with p3900>0, then the parameter is reset if a catalog motor has not been selected (p0300).

p0367[0...n]	Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	75.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points. This parameter specifies the x coordinate (magnetizing current) for the 2 nd value pair of the characteristic. Sets the second magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents: p0366 < p0367 < p0368 < p0369		
	Refer to: p0363		
Note:	When quick commissioning is exited with p3900 > 0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0368[0...n]	Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	150.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.		
	This parameter specifies the x coordinate (magnetizing current) for the 3rd value pair of the characteristic.		
	Sets the third magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents:		
	p0366 < p0367 < p0368 < p0369		
	Refer to: p0364		
Note:	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		
p0369[0...n]	Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6723, 6726
	Min	Max	Factory setting
	5.0 [\%]	800.0 [\%]	210.0 [\%]
Description:	The saturation characteristics (flux as a function of the magnetizing current) is defined using 4 points.		
	This parameter specifies the x coordinate (magnetizing current) for the 4th value pair of the characteristic.		
	Sets the fourth magnetization current of the saturation characteristic in [\%] with reference to the rated magnetization current (r0331).		
Dependency:	The following applies for the magnetizing currents:		
	p0366 < p0367 < p0368 < p0369		
	Refer to: p0365		
Note:	When quick commissioning is selected (p0300).	with p3900 >0, the	reset if a catalog motor has not been
r0370[0...n]	Motor stator resistance cold / Mot R_stator cold		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the motor stator resistance at an ambient temperature (p0625).		
	The value does not include the cable resistance.		
Dependency:	Refer to: p0625		
r0372[0...n]	Cable resistance / Mot R_cable		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the total cable resistance between power unit and motor, as well as the internal converter resistance.		
Dependency:	Refer to: r0238, p0352		

r0373[0...n]	Motor rated stator resistance / Mot R_stator rated		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the rated motor stator resistance at rated temperature (total of p0625 and p0627).		
Dependency:	Refer to: p0627		
Note:	The parameter is not used for synchronous motors (p0300 $=2 x x$).		
r0374[0...n]	Motor rotor resistance cold / Mot R_r cold		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the motor rotor resistance at an ambient temperature p0625.		
Dependency:	Refer to: p0625		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		
r0376[0...n]	Rated motor rotor resistance / Mot R_rotor rated		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the nominal rotor resistance of the motor at the rated temperature. The value is the sum of p0625 and p0628.		
Dependency:	Refer to: p0628		
Note:	The parameter is not used for synchronous motors (p0300 = 2xx).		
r0377[0...n]	Motor leakage inductance total / Mot L_leak total		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the stator leakage inductance of the motor including the motor reactor (p0233).		
r0382[0...n]	Motor magnetizing inductance transformed / Mot L_magn transf		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the magnetizing inductance of the motor.		
Note:	The parameter is not used for synchronous motors (p0300 $=2 \mathrm{xx}$).		

r0395[0...n]	Actual stator resistance / R_stator act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [ohm]	- [ohm]	- [ohm]
Description:	Displays the actual stator resistance (phase value).		
	The parameter value also contains the temperature-independent cable resistance.		
Dependency:	In the case of induction motors the parameter is also affected by the motor temperature model. Refer to: p0350, p0352, p0620		
Note:	In each case, only the stator resistance of the active Motor Data Set is included with the stator temperature of the thermal motor model.		
r0396[0...n]	Actual rotor resistance / R_rotor act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 6730
	Min	Max	Factory setting
	- [ohm]	- [ohm]	
Description:	Displays the actual rotor resistance (phase value).		
	The parameter is affected by the motor temperature model.		
Dependency:	Refer to: p0354, p0620		
Note:	In each case, only the rotor resistance of the active Motor Data Set is included with the rotor temperature of the thermal motor model.		
	This parameter is not used for synchronous motors ($\mathrm{p} 0300=2 \mathrm{xx}$).		

1.2 List of parameters

For $\mathrm{p} 0500=0$ and when the calculation is initiated, the following parameters are set:

- p1574 = 10 V
- p1580 = 0 \%
- p1750.2 = 0
- p1802 = 0
- p1803 = 106 \%

For $\mathrm{p} 0500=3$ and when the calculation is initiated, the following parameters are set:

- p1574 = 2 V
- p1580 = 80% (efficiency optimization)
- p1750.2 = 1
- p1802 = 10 (SVM/FLB with overmodulation and modulation depth reduction over 57 Hz)
- p1803 = 115%

Rep1750:
The setting of $p 1750$ is only relevant for induction motors.
p1750.2 = 1: Encoderless control of the induction motor is effective down to zero frequency.
This operating mode is possible for passive loads. These include applications where the load does not generate regenerative torque when breaking away and the motor comes to a standstill (zero speed) itself when the pulses are inhibited.

p0505	Selecting the system of units / Unit sys select		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C(5)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	4	1
Description:	Sets the actual system of units.		
Value:	1: SI system of units		
	2. System of units referred/SI		
	3: US system of units		
	4: System of units referred/US		
Dependency:	The parameter cannot be changed when master control is active.		
Caution: 1	If a per unit representation is selected and if the reference parameters (e.g. p2000) are subsequently changed, then the physical significance of several control parameters is also adapted at the same time. As a consequence, the control behavior can change (see p1576, p1621, p1744, p1752, p1755 and p1609, p1612, p1619, p1620).		
Note:	Reference parameter for the unit system \% are, for example, p2000 ... p2004. Depending on what has been selected, these are displayed using either SI or US units.		
p0573	Inhibit automatic reference value calculation / Inhibit calc		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Setting to inhibit the calculation of reference parameters (e.g. p2000) when automatically calculating the motor and closed-loop control parameters ($\mathrm{p} 0340, \mathrm{p} 3900$).		
Value:	$\begin{array}{ll} 0: & \text { No } \\ \text { 1: } & \text { Yes } \end{array}$		
Notice:	The inhibit for the reference value calculation is canceled when new motor parameters (e.g. p0305) are entered and only one drive data set exists ($\mathrm{p} 0180=1$). This is the case during initial commissioning.		
	Once the motor and control parameters have been calculated ($\mathrm{p} 0340, \mathrm{p} 3900$), the inhibit for the reference value calculation is automatically re-activated.		
Note:	If value $=0$:		
	The automatic calculation (p0340, p3900) overwrites the reference parameters.		
	If value $=1$:		
	The automatic calculation (p0340, p3900) does not overwrite the reference parameters.		

$\overline{\mathrm{p} 0580}$	Measuring probe input terminal / MT input terminal		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	23	0
Description:	Sets the input terminal for the measuring probe for speed actual value measurement.		
Value:	$\begin{array}{ll}\text { 0: } & \text { No meas probe } \\ \text { 23: } & \text { DI } 3(\text { T. } 8)\end{array}$		
Dependency:	Refer to: p0581		
Note:	DI: Digital Input		
p0581	Measuring probe edge / MT edge		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the edge to evaluate the measuring probe signal for speed actual value measurement. 0 : 0/1 edge 1: 1/0 edge		
Dependency:	Refer to: p0580		
p0582	Measuring probe pulses per revolution / MT pulses per rev		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	12	1
Description:	Sets the number of pulses per revolution (e.g. for disks with holes).		
p0583	Measuring probe maximum measuring time / MT t_meas max		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.040 [s]	10.000 [s]	10.000 [s]
Description:	Sets the maximum measuring time for the measuring probe. If a new pulse is not received before the maximum measuring time has expired, then the speed actual value in r0586 is set to zero. This timer is re-started with the next pulse.		
Dependency:	Refer to: r0586		
p0585	Measuring probe gear factor / Probe gear factor		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00000	1000.00000	1.00000
Description:	Sets the BERO gear factor.		
	The measured speed is multiplied by the BERO gear factor and is displayed in r0586.		

r0586	CO: Measuring probe speed actual value / MT n_act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed actual value measured using the BERO.		
Dependency:	Refer to: p0580, p0583		
Note:	For p0580 $=0$ (no measuring probe), a value of zero is displayed here.		
r0587	CO: Measuring probe measuring time measured / MT t_meas measured		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time between the last two BERO pulses.		
	The measuring time is specified as 32 -bit value with a resolution of $1 / 48 \mu \mathrm{~s}$.		
	If a new pulse is not received before the maximum measured time in p0583 expires, then r0587 is set to the maximum measuring time.		
Dependency:	Refer to: p0580		
Note:	For p0580 $=0$ (no measuring probe), a value of zero is displayed here.		
r0588	CO: Measuring probe pulse counter / MT pulse counter		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of measuring pulses that have occurred (been received) up until now.		
Dependency:	Refer to: p0580		
Note:	After reaching 4294967295 (2^32-1), the counter starts again at 0.		
r0589	Measuring probe delay time / MT t_delay		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the time since the last measuring pulse was detected.		
	The delay time is specified as 32 -bit value with a resolution of $1 / 48 \mu \mathrm{~s}$.		
	When a measuring pulse occurs (is received) the delay time is reset and is limited to the maximum measuring time in p0583.		
Dependency:	Refer to: p0580		
Note:	For p0580 $=0$ (no measuring probe), a value of zero is displayed here		

p0595	Technological unit selection / Tech unit select		
	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: C(5)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	46	1
Description:	Selects the units for the parameters of the technology controller.		
	For p0595 = 1, 2, the reference quantity set in p0596 is not active.		
Value:			
	2: 1 referred no dimensions		
	3: bar		
	4. ${ }^{\circ} \mathrm{C}$		
	5: Pa		
	6: $\mathrm{ttr} / \mathrm{s}$		
	7: $\quad \mathrm{m}^{3} / \mathrm{s}$		
	8: $\quad \mathrm{tr} / \mathrm{min}$		
	9: $\quad \mathrm{m}^{3} / \mathrm{min}$		
	10: $\mathrm{ltr} / \mathrm{h}$		
	11: $\mathrm{m}^{3} / \mathrm{h}$		
	12: kg / s		
	13: $\mathrm{kg} / \mathrm{min}$		
	14: kg / h		
	15: t/min		
	16: t/h		
	17: N		
	18: kN		
	19: Nm		
	20: psi		
	21: ${ }^{\circ} \mathrm{F}$		
	22: gallon/s		
	23: inch $3 / \mathrm{s}$		
	24: gallon/min		
	25: inch ${ }^{3} / \mathrm{min}$		
	26: gallon/h		
	27: inch ${ }^{\text {/ }}$ h		
	28: lb / s		
	29: $\mathrm{lb} / \mathrm{min}$		
	30: lb / h		
	31: lbf		
	32: lbf ft		
	33: K		
	34: rpm		
	35: parts/min		
	36: m/s		
	37: $\mathrm{ff}^{3} / \mathrm{s}$		
	38: $\mathrm{ft}^{3} / \mathrm{min}$		
	39: BTU/min		
	40: BTU/h		
	41: mbar		
	42: inch wg		
	43: ft wg		
	44: mwg		
	45:46:		
Dependency:	Only the unit of the technology controller parameters are switched over (unit group 9_1).		
	Refer to: p0596		
Note:	When switching over from \% into another unit, the following sequence applies:		
	- set p0595 to the required unit		

p0596	Technological unit reference quantity / Tech unit ref qty		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.01	340.28235E36	1.00
Description:	Sets the reference quantity for the technological units.		
	When changing over using changeover parameter p0595 to absolute units, all of the parameters involved refer to the reference quantity.		
Dependency:	Refer to: p0595		
Notice:	When changing over from one technological unit into another, or when changing the reference parameter, a changeover is not made.		
p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: 8016
	Min	Max	Factory setting
	0	4	0
Description:	Sets the sensor type for the motor temperature monitoring.		
Value:	0: No sensor		
	1: PTC alarm \& timer		
	2: KTY84		
	4: Bimetallic NC contact alarm \& timer		
Dependency:	A thermal motor model is calculated corresponding to p0612.		
Caution:	Rep0601 = 2:		
\}	If the motor temperature sensor is not connected but another encoder, then the temperature adaptation of the motor resistances must be switched out (p0620 $=0$). Otherwise, in controlled-loop operation, torque errors will occur that will mean that the motor will not be able to be stopped.		
Note:	Rep0601 = 1:		
	Tripping resistance $=1650$ Ohm. Wire breakage and short-circuit monitoring.		
p0604[0...n]	Mot_temp_mod 2/KTY alarm threshold / Mod 2/KTY A thresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8016
	Min	Max	Factory setting
	0.0 [${ }^{\circ} \mathrm{C}$]	$\left.240.0{ }^{\circ} \mathrm{C}\right]$	
Description:	Sets the alarm threshold for monitoring the motor temperature for motor temperature model 2 or KTY.		
	After the alarm threshold is exceeded, alarm A07910 is output and timer (p0606) is started.		
	If the delay time has expired and the alarm threshold has, in the meantime, not been fallen below, then fault F07011 is output.		
Dependency:	Refer to: p0606, p0612		
Caution:	When selecting a catalog motor (p 0301), this parameter is automatically pre-assigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	The hysteresis is 2 K .		
	When quick commissioning is exited with p3900 >0, then the parameter is reset if a catalog motor has not been selected (p0300).		

p0610[0...n]	Motor overtemperature response / Mot temp response	
	Access level: $2 \quad$ Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(3)$, T Scaling: -	Dyn. index: MDS
	Units group: - Unit selection: -	Func. diagram: 8016
	Min Max	Factory setting
	012	12
Description:	Sets the system response when the motor temperature reaches the alarm threshold.	
Value:	$\begin{array}{ll}0: & \text { No response only alarm no reduction of I_max } \\ \text { 1: } & \text { Messages, reduction of I_max } \\ \text { 2: } & \text { Messages, no reduction of I_max } \\ \text { 12: } & \text { Messages, no reduction of I_max, temperature storage }\end{array}$	
Dependency:	Refer to: p0601, p0604, p0605, p0614	
Note:	The I_max reduction is not executed for PTC (p0601 = 1) or bimetallic NC The I_max reduction results in a lower output frequency. If value $=0$: An alarm is output and I_max is not reduced. If value $=1$: An alarm is output and a timer is started. A fault is output if the alarm is stil - for KTY84, the following applies: I_max. is reduced - for PTC, the following is valid: I_max. is not reduced If value $=2$: An alarm is output and a timer is started. A fault is output if the alarm is stil If value $=12$: Behavior is always the same as for value 2. For motor temperature monitoring without temperature sensor, when switc a non-volatile fashion. When switching on, the same value (reduced by p0 calculation. As a consequence, the UL508C specification is fulfilled.	contact (p0601 = 4). active after this timer has expired. active after this timer has expired. ing off, the model temperature is saved in 14) is taken into account in the model
p0612[0...n]	Mot_temp_mod activation / Mot_temp_mod act	
	Access level: $3 \quad$ Calculated: $\mathrm{p} 0340=1$	Data type: Unsigned16
	Can be changed: U, T Scaling: -	Dyn. index: MDS
	Units group: - Unit selection: -	Func. diagram: 8017
	Min Max	Factory setting
	-	0010 bin
Description:	Setting to activate the motor temperature model.	
Bit field:	Bit Signal name $\mathbf{1}$ signal 01 Activate motor temperature model 2 Yes	0 signal FP No -
Dependency:	Refer to: r0034, p0604, p0605, p0625, p0626, p0627, p0628	
Notice:	Re bit 00: This bit is only automatically activated for permanent-magnet 1FT7 synchron magnet synchronous motors, the user himself must activate motor temper It is only possible to activate this motor temperature model (I2t) for a time	nous motors. For other permanenture model 1 (I2t). nstant greater than zero (p0611>0).
Note:	Mot_temp_mod: motor temperature model Re bit 00: This bit is used to activate/deactivate the motor temperature model for pe Re bit 01: This bit is used to activate/deactivate the motor temperature model for ind	manent-magnet synchronous motors. tion motors.

p0614[0...n]	Thermal resistance adaptation reduction factor / Therm R_adapt red		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [\%]	100 [\%]	30 [\%]
Description:	Sets the reduction factor for the overtemperature of the thermal adaptation of the stator/rotor resistance. The value is a starting value when switching on. Internally, after switch-on, the reduction factor has no effect corresponding to the thermal time constant.		
Dependency:	Refer to: p0610		
Note:	The reduction factor is only effective for $\mathrm{p} 0610=12$, and refers to the overtemperature.		
p0620[0...n]	Thermal adaptation, stator and rotor resistance / Mot therm_adapt R		
	Access level: 4	Calculated: p0340 = 1	Data type: Integer16
	Can be changed: C(3), U, T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	1
Description:	Sets the thermal adaptation of the stator/primary section resistance and rotor/secondary section resistance according to r0395 and r0396.		
Value:	$0:$ No thermal adaptation of stator and rotor resistances 1: Resistances adapted to the temperatures of the thermal model 2: Resistances adapted to the measured stator winding temperature		
Note:	For p0620 = 1, the following applies:		
	The stator resistance is adapted using the temperature in r0035 and the rotor resistance together with the model temperature in r0633.		
	For p0620 $=2$, the following applies:		
	The stator resistance is adapted using the temperature in r0035. If applicable, the rotor temperature for adapting the rotor resistance is calculated from the stator temperature (r0035) as follows: theta_R $=($ r0628 + r0625 $) /(r 0627+r 0625) *$ r0035		
p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	0
Description:	Selects the identification of the stator resistance after booting the Control Unit (only for vector control).		
	The identification is used to measure the actual stator resistance and from the ratio of the result of motor data identification (p0350) to the matching ambient temperature (p 0625) the actual mean temperature of the stator winding is calculated. The result is used to initialize the thermal motor model.		
	Identification of the stator resistance only when the drive is powered up for the first time (pulse enable) after booting the Control Unit.		
	p0621 = 2:		
	Identification of the stator resistance every time the drive is powered up (pulse enable).		
Value:	0: No Rs identification 1: Rs identification after 2: Rs identification after	g-on again g-on each time	
Dependency:	- perform motor data identifica - enter ambient temperature Refer to: p0622, r0623	e p1910) with cold motor	

1.2 List of parameters

Notice:	The calculated stator temperature can only be compared with the measured value of a temperature sensor (KTY) to a certain extent, as the sensor is usually the warmest point of the stator winding, whereas the measured value of identification reflects the mean value of the stator winding.
	Furthermore this is a short-time measurement with limited accuracy that is performed during the magnetizing phase of the induction motor.
Note:	The measurement is carried out:
	- For induction motors
	- When vector control is active (see p1300)
	- If a temperature sensor (KTY) has not been connected
	- When the motor is at a standstill when switched on
	When a flying restart is performed on a rotating motor, the temperatures of the thermal motor model are set to a third of the overtemperatures. This occurs only once, however, when the CU is booted (e.g. after a power failure).
	If identification is activated, the magnetizing time is determined via p0622 and not via p0346. Quick magnetizing (p 1401.6) is de-energized internally and alarm A07416 is displayed. The speed is enabled after completion of the measurement.
p0622[0...n]	Motor excitation time for Rs_ident after powering up again / t_excit Rs_id
	Access level: 3 Calculated: $\mathrm{p} 0340=1,3$ Data type: FloatingPoint32
	Can be changed: C(3), U, T Scaling: - Dyn. index: MDS, p0130
	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	0.000 [s] 20.000 [s] 0.000 [s]
Description:	Sets the excitation time of the motor for the stator resistance identification after powering up again (restart).
Dependency:	Refer to: p0621, r0623
Note:	For p0622 < p0346 the following applies:
	If identification is activated, the magnetizing time is influenced by p0622. The speed is enabled after measurement is complete, but not before the time in p0346 has elapsed (see r0056 bit 4). The time taken for measurement also depends on the settling time of the measured current.
	For p0622 >= p0346 the following applies:
	Parameter p0622 is internally limited to the magnetizing time p0346, so that p0346 represents the maximum possible magnetizing time during identification. The entire measurement period (magnetizing plus measurement settling time plus measuring time) will always be greater than p0346.

r0623

Rs identification stator resistance after switch on again / Rs-id Rs aft sw-on		
Access level: 4	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
$-[o \mathrm{hm}]$	$-[o h m]$	$-[$ [ohm $]$

Description: Displays the stator resistance determined using the Rs identification after switching on again. Dependency: Refer to: p0621, p0622

p0625[0...n]	Motor ambient temperature $/$ Mot T_ambient		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,2$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: $21 _1$	Unit selection: p0505	Func. diagram: 8016
	Min	Max	Factory setting

p0626[0...n]	Motor overtemperature, stator core / Mot T_over core		
	Access level: 4	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: 21_2	Unit selection: p0505	Func. diagram: 8016
	Min	Max	Factory setting
	20 [K]	200 [K]	50 [K]
Description:	Defines the rated overtemperature of the stator core referred to the ambient temperature.		
Dependency:	For 1LA7 motors (p0300), the parameter is pre-set as a function of p0307 and p0311.		
	Refer to: p0625		
Caution:	When selecting a standard induction motor listed in the catalog ($\mathrm{p} 0300>100$, p0301 > 10000), this parameter is automatically preassigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When quick commissioning is exited with p3900 > 0, then the parameter is reset if a catalog motor has not been selected (p0300).		
p0627[0...n]	Motor overtemperature, stator winding / Mot T_over stator		
	Access level: 4	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: 21_2	Unit selection: p0505	Func. diagram: 8016
	Min	Max	Factory setting
	20 [K]	200 [K]	80 [K]
Description:	Defines the rated overtemperature of the stator winding referred to the ambient temperature.		
Dependency:	For 1LA7 motors (p0300), the parameter is pre-set as a function of p0307 and p0311.		
Caution:	When selecting a standard induction motor listed in the catalog ($p 0300>100$, p0301 >10000), this parameter is automatically preassigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When quick commissioning is exited with p3900 > 0, then the parameter is reset if a catalog motor has not been selected (p0300).		
p0628[0...n]	Motor overtemperature rotor winding / Mot T_over rotor		
	Access level: 4	Calculated: p0340 = 1,2	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: 21_2	Unit selection: p0505	Func. diagram: 8016
	Min	Max	Factory setting
	20 [K]	200 [K]	100 [K]
Description:	Defines the rated overtemperature of the squirrel cage rotor referred to ambient temperature.		
Dependency:	For 1LA7 motors (p0300), the parameter is pre-set as a function of p0307 and p0311.		
Caution:	When selecting a standard induction motor listed in the catalog ($p 0300>100, p 0301>10000$), this parameter is automatically preassigned and is write protected. Information in p0300 should be carefully observed when removing write protection.		
Note:	When quick commissioning is exited with p3900 > 0, then the parameter is reset if a catalog motor has not been selected (p0300).		
r0630[0...n]	Mot_temp_mod ambient temperature / Mod T_ambient		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: MDS
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8016
	Min	Max	Factory setting
	- [$\left.{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- [${ }^{\text {C }}$] $]$
Description:	Displays	he motor temperature	

r0631[0...n]	Mot_temp_mod stator iron temperature / Mod T_stator		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: MDS
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8016
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator core temperature of the motor temperature model.		

r0632[0...n]	Mot_temp_mod stator winding temperature / Mod T_winding		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: MDS
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8016
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the stator winding temperature of the motor temperature model.		

r0633[0...n]	Mot_temp_mod rotor temperature / Mod T_rotor		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2006	Dyn. index: MDS
	Units group: 21_1	Unit selection: p0505	Func. diagram: 8016
	Min	Max	Factory setting
	$-\left[{ }^{\circ} \mathrm{C}\right]$	$-\left[{ }^{\circ} \mathrm{C}\right]$	- $\left.{ }^{\circ} \mathrm{C}\right]$
Description:	Displays the rotor temperature of the motor temperature model.		
Note:	For motor temperature model 3 (p0612.2 = 1), this parameter is not valid:		
p0634[0...n]	Q flux flux constant unsaturated / PSIQ KPSI UNSAT		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [Vsrms]	100.000 [Vsrms]	0.000 [Vsrms]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients.		
	The parameter weights the unsaturated component of the quadrature axis flux function.		
p0635[0...n]	Q flux quadrature axis current constant unsaturated / PSIQ KIQ UNSAT		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients.		
Dependency:	This parameter describes the interdependency of the unsaturated component of the quadrature axis cur		

p0636[0...n]	Q flux direct axis current constant unsaturated / PSIQ KID UNSAT		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. This parameter describes the interdependency of the unsaturated component of the direct axis current.		
Dependency:	Refer to: p0634		
p0637[0...n]	Q flux flux gradient saturated / PSIQ Grad SAT		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [mH]	10000.00 [mH]	$0.00[\mathrm{mH}]$
Description:	The non-linear and cross-coupled quadrature axis flux functions are defined using 4 coefficients. This parameter describes the gradients of the saturated component over the quadrature axis current.		
Dependency:	Refer to: p0634, p0635, p0636		
p0640[0...n]	Current limit / Current limit		
	Access level: 2	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1,3), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 5722, 6640
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the current limit.		
Dependency:	Refer to: r0209		
Note:	The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0305. The current limit p0640 is limited to r0209.		
	The resulting current limit is displayed in r0067 and if required, r0067 is reduced by the thermal model of the power unit.		
	The torque and power limits (p1520, p1521, p1530, p1531) matching the current limit are automatically calculated when exiting the quick commissioning using p3900>0 or using the automatic parameterization with p0340 $=3,5$.		
	p0640 is pre-assigned for the automatic self commissioning routine (e.g. to $1.5 \times \mathrm{p} 0305$, with p $0305=\mathrm{r} 0207[1]$).		
	p0640 must be entered when commissioning the system. This is the reason that p0640 is not calculated by the automatic parameterization when exiting the quick commissioning ($\mathrm{p} 3900>0$).		

p0641[0...n]	Cl: Current limit variable / Curr lim var		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6640
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the variable current limit.		
	The value is referred to p0640.		

p0650[0...n]	Actual motor operating hours / Mot t_oper act		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [h]	4294967295 [h]	0 [h]
Description:	Displays the operating hours for the corresponding motor.		
	The motor operating time counter continues to run when the pulses are enabled. When the pulse enable is withdrawn, the counter is held and the value saved.		
Dependency:	Refer to: p0651		
Note:	The operating hours counter in p0650 can only be reset to 0 .		
	The operating hours counter only runs with drive data set 0 and 1 (DDS).		

p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [h]	150000 [h]	0 [h]
Description:	Sets the service/maintenance intervals in hours for the appropriate motor. An appropriate fault is output when the operating hours set here are reached.		
Dependency:	Refer to: p0650		
Note:	For p0651 $=0$, the operating hours counter is disabled.		
	When setting p0651 to 0 , then p 0650 is automatically set to 0 .		
	The operating hours counter only runs with drive data set 0 and 1 (DDS).		
	If there is no temperature monitor, then interconnect to a fixed value.		

Re index 3:
When the binector input is interconnected, pre-charging is switched-on independent of the magnitude of the precharging threshold.

r0720[0...4]	CU number of inputs and outputs / CU I/O count		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1510
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of inputs and outputs		
Index:	[0] = Number of digital inputs		
	[1] = Number of digital outputs		
	[2] = Number of digital input/outputs bidirectional		
	[3] = Number of analog inputs		
	[4] = Number of analog outputs		
r0721	CU digital inputs terminal actual value / CU DI actual value		
	Access level: 2	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1510, 2020, 2030, 2031, 2100, 2120, 2130, 2131, 2132, 2133
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual value at the digital inputs.		
	This means that the actual input signal can be checked at terminal DI x or DI/DO x prior to switching from the simulation mode ($p 0795 \cdot x=1$) to terminal mode ($p 0795 \cdot x=0$).		

Bit field:		Signal name	1 signal	0 signal	FP
	00	DI 0 (X07.4)	High	Low	-
	01	DI 1 (X07.2)	High	Low	-
	02	DI 2 (X08.4)	High	Low	-
		DI 3 (X08.2)	High	Low	-
		DI 11 (X10.3/5) Al 0	High	Low	-
	12	DI 12 (X10.4/6) Al 1	High	Low	-
Note:	AI: Analog Input				
	DI: Digital Input				
r0722.0.. 12	CO/BO: CU digital inputs status / CU DI status				
	Access level: 2		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	$\begin{aligned} & \text { Func. diagram: } 1510,2020,2030, \\ & 2031,2100,2120,2130,2131,2132, \\ & 2133 \end{aligned}$	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the status of the digital inputs.				
Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X07.4)	High	Low	-
		DI 1 (X07.2)	High	Low	-
		DI 2 (X08.4)	High	Low	-
		DI 3 (X08.2)	High	Low	-
		DI 11 (X10.3/5) Al 0	High	Low	-
	12	DI 12 (X10.4/6) Al 1	High	Low	-
Dependency:	Refer to: r0723				
Note:	Al: Analog Input				
	DI: Digital Input				
r0723.0.. 12	CO/BO: CU digital inputs status inverted / CU Dl status inv				
	Access level: 3		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	$\begin{aligned} & \text { Func. diagram: 1510, 2020, 2030, } \\ & 2031,2100,2120,2130,2131,2132, \\ & 2133 \end{aligned}$	
	Min		Max	Factory setting	
	-			-	
Description:	Displays the inverted status of the digital inputs.				
Bit field:		Signal name	1 signal	0 signal	FP
		DI 0 (X07.4)	High	Low	-
		DI 1 (X07.2)	High	Low	-
		DI 2 (X08.4)	High	Low	-
		DI 3 (X08.2)	High	Low	-
		DI 11 (X10.3/5) Al 0	High	Low	-
	12	DI 12 (X10.4/6) Al 1	High	Low	-
Dependency:	Refer to: r0722				
Note:	Al: Analog Input				
	DI: Digital Input				
p0724	CU digital inputs debounce time / CU DI t_debounce				
	Access level: 3		Calculated: -	Data type: FloatingPoint32	
	Can be changed: U, T		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: -	
	Min			Factory setting	
	0.000 [ms]		20.000 [ms]	$4.000[\mathrm{~ms}]$	
Description:	Sets the debounce time for digital inputs.				

1.2 List of parameters

Note: \quad The digital inputs are read in cyclically every 2 ms (DI 11, DI 12 every 4 ms$).$
To debounce the signals, the set debounce time is converted into integer multiple debounce clock cycles $\mathrm{Tp}(\mathrm{Tp}=$
$\mathrm{p} 0724 / 2 \mathrm{~ms})$.
DI: Digital Input

r0727	Quick commissioning DIP switch status / Comm DIP status				
		ess level: 3 Cal	Calculated: -	Data type: Unsigned32	
		be changed: - Sca	Scaling: -	Dyn. index: -	
		group: - Unit	Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-	-	-	-	
Description:	Displays the status of the individual commissioning DIP switches of switch blocks S1 and S2.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	S1.3 temperature sensor type bit 0	0 ON	OFF	-
	01	S1.4 temperature sensor type bit 1	1 ON	OFF	-
	02	S2.1 pulse frequency bit 0	ON	OFF	-
	03	S2.2 pulse frequency bit 1	ON	OFF	-
	04	S2.3 pulse frequency bit 2	ON	OFF	-
	05	S1.6 motor holding brake	ON	OFF	-
	06	S1.5 87 Hz operation	ON	OFF	-
	07	S2.4 ramp-up/ramp-down time bit 0	0 ON	OFF	-
	08	S2.5 ramp-up/ramp-down time bit 1	1 ON	OFF	-
	09	S2.6 ramp-up/ramp-down time bit 2	2 ON	OFF	-
	10	S2.7 ramp-up/ramp-down time bit 3	3 ON	OFF	-

Note:
Re bit 01, 00 (temperature sensor type):

- bits 1, $0=0,0$--> no sensor type set via DIP switch, can be set via p0601
- bit 1, $0=0,1$--> PTC (DIP switch effective, p0601 can only be read, p0601 = 1 is displayed)
- bit 1, $0=1,0$--> KTY84 (DIP switch effective, p0601 can only be read, p0601 = 2 is displayed)
- bit 1, $0=1,1$--> bimetallic NC contact (DIP switch effective, p0601 can only be read, p0601 = 4 is displayed) Re bits 04, 03, 02 (pulse frequency)
- bits 4, 3, 2 = 0, 0,0 --> no pulse frequency set via DIP switch, can be set via p1800
- bits $4,3,2=0,0,1-->4 \mathrm{kHz}$ (DIP switch effective, p1800 can only be read, and indicates the pulse frequency that has been set)
- bits 4, 3, $2=0,1,0$--> 6 kHz (DIP switch effective, p1800 can only be read, and indicates the pulse frequency that has been set)
- bits $4,3,2=0,1,1-->8 \mathrm{kHz}$ (DIP switch effective, p1800 can only be read, and indicates the pulse frequency that has been set)
- bits $4,3,2=1,0,0-->10 \mathrm{kHz}$ (DIP switch effective, p1800 can only be read, and indicates the pulse frequency that has been set)
- bits $4,3,2=1,0,1-->12 \mathrm{kHz}$ (DIP switch effective, p1800 can only be read, and indicates the pulse frequency that has been set)
- bits $4,3,2=1,1,0-->14 \mathrm{kHz}$ (DIP switch effective, p1800 can only be read, and indicates the pulse frequency that has been set)
- bits $4,3,2=1,1,1$--> 16 kHz (DIP switch effective, p1800 can only be read, and indicates the pulse frequency that has been set)
Re bit 05 (motor holding brake):
- bit 5 = 0 --> no motor holding brake set via DIP switch, can be set via p1215
- bit 5 = 1 --> motor holding brake available (DIP switch effective, p1215 can only be read, p1215 = 1 is displayed)

Re bit 06 (87 Hz operation):

- bit $6=0$--> no 87 Hz operation set via DIP switch, can be set via p0133.0/.1
- bit $6=1$--> 87 Hz operation (DIP switch effective, p0133.0/.1 can only be read, p0133.0/.1 = 1 is displayed) Re bits 10, 09, 08, 07 (ramp-up/ramp-down time):
- bits $10,9,8,7=0,0,0,0$--> no ramp-up/ramp-down time set via DIP switch, can be set via p1120/p1121/p1138/p1139
- bits 10, $9,8,7=0,0,0,1-->0.1 \mathrm{~s}$ (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits $10,9,8,7=0,0,1,0-->0.2$ s (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits 10, $9,8,7=0,0,1,1$--> 0.3 s (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits $10,9,8,7=0,1,0,0$--> 0.5 s (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits $10,9,8,7=0,1,0,1-->0.7 s$ (DIP switch effective, $p 1120 / p 1121 / \mathrm{p} 1138 / \mathrm{p} 1139$ can only be read)
- bits $10,9,8,7=0,1,1,0-->1 \mathrm{~s}$ (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits $10,9,8,7=0,1,1,1-->2 s$ (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits $10,9,8,7=1,0,0,0-->3 s$ (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits $10,9,8,7=1,0,0,1-->5 s$ (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits $10,9,8,7=1,0,1,0->7 s$ (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits $10,9,8,7=1,0,1,1-->10 s($ DIP switch effective, $p 1120 / \mathrm{p} 1121 / \mathrm{p} 1138 / \mathrm{p} 1139$ can only be read)
- bits $10,9,8,7=1,1,0,0-->20 s$ (DIP switch effective, $p 1120 / \mathrm{p} 1121 / \mathrm{p} 1138 / \mathrm{p} 1139$ can only be read)
- bits 10, 9, 8, $7=1,1,0,1-->30 \mathrm{~s}$ (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits $10,9,8,7=1,1,1,0-->50 s($ DIP switch effective, p1120/p1121/p1138/p1139 can only be read)
- bits $10,9,8,7=1,1,1,1-->70$ s (DIP switch effective, p1120/p1121/p1138/p1139 can only be read)

1.2 List of parameters

	r0052.9 Control request					
	r0052.14 Motor rotates forwards					
	r0053.0 DC braking active					
	r0053.1 n_act > p2167 (n_off)					
	r0053.2 n_act <= p1080 (n_min)					
	r0053.3 I_act > p2170					
	r0053.4 n_act > p2155					
	r0053.5 n_act <= p2155					
	r0053.6 n_act >= n_set r0053.10 technology controller output at the lower limit					
	r0053.11 Technology controller output at the upper limit					
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.					
Note:	DO: Digital Output					
r0747	CU digital outputs status / CU DO status					
		ess level: 3	Calcu		Data type: Unsigned32	
		be changed: -	Scalin		Dyn. index: -	
		group: -	Unit	on: -	Func. diagram: 2130, 2131, 2132, 2133	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the status of digital outputs.					
Bit field:		Signal name		1 signal	0 signal	FP
		DO 0 (NO: X05.4)		High	Low	-
		DO 1 (NO: X05.2)		High	Low	-
Note:	DO: Digital Output					
	T: Terminal					
	Relay output: NO = normally open, NC = normally closed					
	Inversion using p0748 has been taken into account.					
p0748	CU invert digital outputs / CU DO inv					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: U, TUnits group: -		Scaling: -		Dyn. index: -	
			Unit selection: -		Func. diagram: 2030, 2031, 2130, 2131, 2132, 2133	
	Min		Max		Factory setting	
	-		-		$0000 \text { bin }$	
Description:	Setting to invert the signals at the digital outputs.					
Bit field:		Signal name		1 signal	0 signal	FP
		DO 0 (NO: X05.4)		Inverted	Not inverted	-
		DO 1 (NO: X05.2)		Inverted	Not inverted	-
Note:	DO: Digital Output					
	T: Terminal					
	Relay output: NO = normally open, NC = normally closed					
r0751.0... 10	BO: CU analog inputs status word/ CU Al status word					
	Access level: 3		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: 9566, 9568	
	Min				Factory setting	
	-		-		-	
Description:	Displays the status of analog inputs.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Analog input AIO w		Yes	No	-
	01	Analog input Al1 w		Yes	No	-

	02 Analog input Al2 wire breakage			Yes	No	
		Analog input AIO n		Yes	No	-
		Analog input Al1 n		Yes	No	-
	10	Analog input Al2 n		Yes	No	-
Note:	AI: Analog Input					
r0752[0...2]	CO: CU analog inputs input voltage/current actual / CU AI U/I_inp act					
	Access level: 2		Calculated: -		Data type: FloatingPoint32	
	Can be changed: - S			Scaling: -	Dyn. index: -	
	Units group: - U			Unit selection: -	Func. diagram: 9566, 9568, 9576	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the actual input voltage in V when set as voltage input.					
	Displays the actual input current in mA when set as current input and with the load resistor switched in.					
Index:	[0] = AIO (X10.3/5)					
	[1] = Al1 (X10.4/6)					
	[2] = Motor speed potentiometer					
Dependency:	The type of analog input Alx (voltage or current input) is set using p0756.					
	Refer to: p0756					
Note:	AI: Analog Input					
p0753[0...2]	CU analog inputs smoothing time constant/ CU AI T_smooth					
	Access level: 3		Calculated: -		Data type: FloatingPoint32	
	Can be changed: U, T Sc			Scaling: -	Dyn. index: -	
	Units group: - Un			Unit selection: -	Func. diagram: 9566, 9568, 9576	
	Min M			Max	Factory setting	
	0.0 [ms] 100				0.0 [ms]	
Description: Index:	Sets the smoothing time constant of the 1st-order low pass filter for the analog inputs.					
	[0] = AIO (X10.3/5)					
	[1] = Al1 (X10.4/6)					
	[2] = Motor speed potentiometer					
Note:	AI: Analog Input					
r0755[0...2]	CO: CU analog inputs actual value in percent / CU Al value in \%					
	Access level: 2		Calculated: -		Data type: FloatingPoint32	
	Can be changed: -		Scaling: PERCENT		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: 9566, 9568, 9576	
	Min		Max		Factory setting	
	- [\%]		- [\%]		- [\%]	
Description:	Displays the currently referred input value of the analog inputs.					
	When interconnected, the signals are referred to the reference quantities p200x and p205x.					
Index:	[0] = AIO (X10.3/5)					
	[1] = Al1 (X10.4/6)					
	[2] = Motor speed potentiometer					
Note:	AI: Analog Input					

p0756[0...2]	CU analog inputs type / CU Al type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	0	9	[0] 0
			[1] 0
			[2] 9
Description:	Sets the type of analog inputs.		
	$\mathrm{p} 0756[0 \ldots 1]=0,1,4$ corresponds to a voltage input (r0752, p0757, p0759 are displayed in V).		
	p0756[0...1] = 2, 3 corresponds to a current input (r0752, p0757, p0759 are displayed in mA).		
	In addition, the associated DIP switch must be set.		
	For the voltage input, DIP switch AIO/1 must be set to "U".		
	For the current input, DIP switch AI0/1 or AI2 must be set to "I".		
Value:	0: Unipolar voltage input ($0 \mathrm{~V} \ldots+10 \mathrm{~V}$)		
	1: Unipolar voltage input monitored (+2 V ... +10 V)		
	2: Unipolar current input ($0 \mathrm{~mA} \ldots+20 \mathrm{~mA}$)		
	3: Unipolar current input monitored (+4 mA to +20 m		
	9: Unipolar voltage input ($0 \mathrm{~V} \ldots+3 \mathrm{~V}$)		
Index:	[0] = AIO (X10.3/5)		
	[1] = Al1 (X10.4/6)		
	[2] = Motor speed potentiometer		
Warning:	The maximum voltage difference between analog input terminals $\mathrm{Al}+$, $\mathrm{Al}-$, and the ground must not exceed 35 V .		
	If the system is operated when the load resistor is switched on (DIP switch set to "I"), the voltage between differential inputs $\mathrm{Al}+$ and Al - must not exceed 10 V or the injected 80 mA current otherwise the input will be damaged.		
Note:	When changing p0756, the parameters of the scaling characteristic (p 0757 , p 0758 , p0759, p0760) are overwritten with the following default values:		
	For $\mathrm{p} 0756=0,4, \mathrm{p} 0757$ is set to $0.0 \mathrm{~V}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=10.0 \mathrm{~V}$ and p0760 $=100.0 \%$.		
	For $\mathrm{p} 0756=1, \mathrm{p} 0757$ is set to $2.0 \mathrm{~V}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=10.0 \mathrm{~V}$ and p0760 $=100.0 \%$.		
	For p0756 = 2, p0757 is set to $0.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%$, $0759=20.0 \mathrm{~mA}$ and $\mathrm{p} 0760=100.0 \%$.		
	For $\mathrm{p} 0756=3, \mathrm{p} 0757$ is set to $4.0 \mathrm{~mA}, \mathrm{p} 0758=0.0 \%, \mathrm{p} 0759=20.0 \mathrm{~mA}$ and $\mathrm{p} 0760=100.0 \%$.		
p0757[0...2]	CU analog inputs characteristic value x1/ CU Al char x1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-50.000	160.000	0.000
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate $(\mathrm{V}, \mathrm{mA})$ of the 1 st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AIO }(\mathrm{X} 10.3 / 5)} \\ & {[1]=\text { Al1 (X10.4/6) }} \\ & {[2]=\text { Motor speed poter }} \end{aligned}$		
Note:	The parameters for the characteristic do not have a limiting effect.		

p0758[0...2]	CU analog inputs characteristic value y1 / CU Al char y1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	0.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the y coordinate (percentage) of the 1st value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AIO (X10.3/5) }} \\ & {[1]=\text { Al1 (X10.4/6) }} \end{aligned}$		
	[2] = Motor speed potentiometer		
Note:	The parameters for the characteristic do not have a limiting effect.		

p0759[0...2]	CU analog inputs characteristic value x2 / CU Al char $\times 2$		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-50.000	160.000	[0] 10.000
			[1] 10.000
			[2] 3.300
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
	This parameter specifies the x coordinate (V, mA) of the 2 nd value pair of the characteristic.		
Index:	$\begin{aligned} & {[0]=\text { AIO (X10.3/5) }} \\ & {[1]=\text { Al1 (X10.4/6) }} \end{aligned}$		
	[2] = Motor speed potentiometer		
Note:	The parameters for the characteristic do not have a limiting effect.		
p0760[0...2]	CU analog inputs characteristic value y2 / CU AI char y2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting
	-1000.00 [\%]	1000.00 [\%]	100.00 [\%]
Description:	Sets the scaling characteristic for the analog inputs.		
	The scaling characteristic for the analog inputs is defined using 2 points.		
Index:	This parameter specifies the y coordinate (percentage) of the 2nd value pair of the characteristic. [0] = AIO (X10.3/5)		
	[1] = Al1 (X10.4/6)		
	[2] = Motor speed potentiometer		
Note:	The parameters for the characteristic do not have a limiting effect.		

p0761[0...2] CU analog inputs wire breakage monitoring response threshold / CU WireBrkThresh
Access level: $2 \quad$ Calculated: - Data type: FloatingPoint32

Can be changed: U, T

Units group: -
Min
0.00

Scaling: - Dyn. index: -
Unit selection: - Func. diagram: 9566, 9568
Max Factory setting
20.002 .00

Description: Sets the response threshold for the wire breakage monitoring of the analog inputs.
The unit for the parameter value depends on the set analog input type.

1.2 List of parameters

Index:	$[0]=$ AIO $(\mathrm{X} 10.3 / 5)$
	$[1]=$ AI1 $(\mathrm{X} 10.4 / 6)$
	$[2]=$ Motor speed potentiometer
Dependency:	For the following analog input type, the wire breakage monitoring is active:
	$\mathrm{p} 0756[0 \ldots 1]=1$ (unipolar voltage input monitored $(+2 \mathrm{~V} \ldots+10 \mathrm{~V})$), unit $[\mathrm{V}]$
	$\mathrm{p} 0756[0 \ldots 1]=3$ (unipolar current input monitored $(+4 \mathrm{~mA} \ldots+20 \mathrm{~mA}))$, unit $[\mathrm{mA}]$
	Refer to: p0756
	AI: Analog Input
	When p0761 $=0$, wire breakage monitoring is not carried out.

p0762[0..2]	CU analog inputs wire breakage monitoring delay time / CU wire brk t_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566,9568
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	$1000[\mathrm{~ms}]$	$100[\mathrm{~ms}]$

Description: Sets the delay time for the wire breakage monitoring of the analog inputs.

Index:	$[0]=$ AIO (X10.3/5)
	$[1]=$ AI1 (X10.4/6)
	$[2]=$ Motor speed potentiometer
Note:	AI: Analog Input

p0764[0...2]	CU analog inputs dead zone / CU Al dead zone		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 9566, 9568, 9576
	Min	Max	Factory setting

$0.000[\mathrm{~V}] \quad 20.000[\mathrm{~V}] \quad$ [0] 0.000 [V]
[1] 0.000 [V]
[2] 0.300 [V]

Description:	Determines the width of the dead zone at the analog input.
	Analog input type unipolar (e.g. $0 \ldots+10 \mathrm{~V}$):
	The dead zone starts with the characteristic value $\times 1 / \mathrm{y} 1$ ($\mathrm{p} 0757 / \mathrm{p} 0758$).
	Analog input type bipolar (e.g. -10 V ... +10 V):
	The dead zone is located at the symmetrical center between characteristic value $x 1 / \mathrm{y} 1$ ($\mathrm{p} 0757 / \mathrm{p} 0758$) and $\mathrm{x} 2 / \mathrm{y} 2$ ($\mathrm{p} 0759 / \mathrm{p} 0760$). The set value doubles the dead zone.
Index:	[0] = AIO (X10.3/5)
	[1] = Al1 (X10.4/6)
	[2] = Motor speed potentiometer
Notice:	Re index 2:
	The dead zone is automatically set and cannot be changed by the user.
Note:	AI: Analog Input

p0795	CU digital inputs simulation mode / CU DI simulation		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	$\begin{aligned} & \text { Func. diagram: 1510, 2020, 2030, } \\ & 2031,2100,2120,2130,2131,2132, \\ & 2133 \end{aligned}$
	Min	Max	Factory setting
	-	-	0000000000000000 bin
Description:	Sets the simulation mode for digital inputs.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 DI 0 (X07.4)	Simulation	Terminal eval
	01 DI 1 (X07.2)	Simulation	Terminal eval

	02 DI $2($ X08.4 $)$	Simulation	Terminal eval
	03 DI $3($ X08.2	Simulation	Terminal eval
	11	DI $11($ X10.3/5) AI 0	Simulation

p0796	CU digital inputs simulation mode setpoint / CU DI simul setp		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	$\begin{aligned} & \text { Func. diagram: 1510, 2020, 2030, } \\ & 2031,2100,2120,2130,2131,2132, \\ & 2133 \end{aligned}$
	Min	Max	Factory setting
	-	-	0000000000000000 bin
Description:	Sets the setpoint for the input signals in the digital input simulation mode.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 DI 0 (X07.4)	High	Low
	01 DI 1 (X07.2)	High	Low
	02 DI 2 (X08.4)	High	Low
	03 DI 3 (X08.2)	High	Low
	11 DI 11 (X10.3/5) AI 0	High	Low
	12 DI 12 (X10.4/6) Al 1	High	Low
Dependency:	The simulation of a digital input is selected using p0795.		
	Refer to: p0795		
Note:	This parameter is not saved when data is backed up (p0971).		
	Al: Analog Input		
	DI: Digital Input		

p0797[0...2]	CU analog inputs simulation mode / CU Al sim_mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the simulation mode for the analog inputs.		
Value:	0 : \quad Terminal evaluation for analog input x 1: \quad Simulation for analog input x		
Index:	$\begin{aligned} & {[0]=\text { Al0 }(\mathrm{X} 10.3 / 5)} \\ & {[1]=\text { Al1 (X10.4/6) }} \\ & {[2]=\text { Motor speed poten }} \end{aligned}$		
Dependency:	The setpoint for the inp Refer to: p0798	pecified via p0798.	
Note:	This parameter is not saver AI: Analog Input	a is backed up (p 0	

p0798[0...2]	CU analog inputs simulation mode setpoint / CU AI sim setp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-50.000	2000.000	0.000
Description:	Sets the setpoint for the input value in the simulation mode of the analog inputs.		

1.2 List of parameters

p0806	BI: Inhibit master control / PcCtrl inhibit			
	Access level: 3	Calculated: -	Data type: U	
	Can be changed: T	Scaling: -	Dyn. index	
	Units group: -	Unit selection: -	Func. diagra	
	Min	Max	Factory sett	
	-	-	0	
Description:	Sets the signal source to block the master control.			
Dependency:	Refer to: r0807			
Note:	The commissioning software (drive control panel) uses the master control, for example.			
r0807.0	BO: Master control active / PcCtrl active			
	Access level: 3	Calculated: -	Data type: U	
	Can be changed: -	Scaling: -	Dyn. index:	
	Units group: -	Unit selection: -	Func. diagra	
	Min	Max	Factory sett	
	-	-	-	
Description:	Displays what has the master control.			
	The drive can be controlled via the BICO interconnection or from external (e.g. the commissioning software).			
Bit field:	Bit Signal name	1 signal	0 signal	
	00 Master control active		No	$\begin{aligned} & 5030, \\ & 6031 \end{aligned}$
Dependency:	Refer to: p0806			
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be transferred from another automation device.			
Note:	Bit 0 $=0$: BICO interconnection active			
	Bit $0=1$: Master control for PC/AOP			
	The commissioning software (drive control panel) uses the master control, for example.			

p0809[0...2]	Copy Command Data Set CDS / Copy CDS		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 8560
	Min	Max	Factory setting
	0	3	0
Description:	Copies one Command Data Set (CDS) into another.		
Index:	$\begin{aligned} & {[0]=\text { Source Comma }} \\ & {[1]=\text { Target Comman }} \\ & {[2]=\text { Start copying pr }} \end{aligned}$		
Dependency:	Refer to: r3996		
Notice:	When the command data sets are copied, short-term communication interruptions may occur.		
Note:	Procedure:		
	1. In Index 0 , enter which command data set should be copied.		
	2. In Index 1, enter the command data set that is to be copied into.		
	3. Start copying: Set index 2 from 0 to 1 .		
	p0809[2] is automatically set to 0 when copying is comple		

p0810	BI: Command data set selection CDS bit 0 / CDS select., bit 0		
CU_G110M_DP	Access level: 2	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8560
	Min	Max	Factory setting
	-	-	722.3
Description:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).		

Dependency:	Refer to: r0050, p0811, r0836
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.
	The currently effective command data set is displayed in r0050.
	A Command Data Set can be copied using p0809.

p0810	BI: Command data set selection CDS bit 0 / CDS select., bit 0		
CU_G110M_USS	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8560
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Command Data Set bit 0 (CDS bit 0).		
Dependency:	Refer to: r0050, p0811, r0836		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective command data set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		

p0811	BI: Command data set selection CDS bit 1 / CDS select., bit 1		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8560
	Min	-	Factory setting
	-	0	
Description:	Sets the signal source to select the Command Data Set bit 1 (CDS bit 1).		
Dependency:	Refer to: r0050, p0810, r0836		
Note:	The Command Data Set selected using the binector inputs is displayed in r0836.		
	The currently effective command data set is displayed in r0050.		
	A Command Data Set can be copied using p0809.		

p0819[0...2]	Copy Drive Data Set DDS / Copy DDS		
	Access level: 2	Calculated: -	Data type: Unsigned8
	Can be changed: C(15)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8565
	Min	Max	Factory setting
	0	3	0
Description:	Copies one Drive Data Set (DDS) into another.		
Index:	[0] = Source Drive Data Set [1] = Target Drive Data Set [2] = Start copying procedure		
Dependency:	Refer to: r3996		
Notice:	When the drive data sets are copied, short-term communication interruptions may occur.		
Note:	Procedure:		
	1. In Index 0, enter which drive data set is to be copied.		
	2. In Index 1, enter the drive data set data that is to be copied into.		
	3. Start copying: Set index 2 from 0 to 1.		
	p0819[2] is automatically set to 0 when copying is completed.		

p0820[0...n]	BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: C(15), T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 8565, 8575
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 0 (DDS, bit 0).		
Dependency:	Refer to: r0051, p0826, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0821[0...n]	BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: C(15), T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 8565
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the Drive Data Set, bit 1 (DDS, bit 1).		
Dependency:	Refer to: r0051, r0837		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0826[0...n]	Motor changeover motor number / Mot_chng mot No.		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(3), \mathrm{T}$	Scaling: -	Dyn. index: MDS
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		3	0
Description:	Sets the freely-assignable motor number for the drive data set changeover.		
	If the same motor is driven by different drive data sets, the same motor number must also be entered in these data sets.		
	If the motor is also switched with the drive data set, different motor numbers must be used. In this case, the data set can only be switched when the pulse inhibit is set.		
Note:	If the motor numbers are identical, the same thermal motor model is used for calculation after data set changeover. If different motor numbers are used, different models are also used for calculating (the inactive motor cools down in each case).		
	For the same motor number, the correction values of the Rs, Lh or kT adaptation are applied for the data set changeover (refer to r1782, r1787, r1797).		

r0835.2... 8	CO/BO: Data set changeover status word / DDS_ZSW		
	Calculated: -		
	Can be changed: -	Scaling: -	Data type: Unsigned16

	Re bit 05:			
	A data set changeover is only carried out when pole position identification is not running.			
	Re bit 07:			
	A data set changeover is only carried out when rotating measurement is not running.			
	Re bit 08:			
	A data set changeover is only carried out when motor data identification is not running.			
r0836.0.. 1	CO/BO: Command Data Set CDS selected / CDS selected			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: 1530, 8560	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the command data set (CDS) selected via the binector input.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 CDS select. bit 0	ON	OFF	-
	01 CDS select. bit 1	ON	OFF	-
Dependency:	Refer to: r0050, p0810, p0811			
Note:	Command data sets are selected via binector input p0810 and following.			
	The currently effective command data set is displayed in r0050.			
r0837.0..1	CO/BO: Drive Data Set DDS selected / DDS selected			
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: 8565	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the drive data set (DDS) selected via the binector input.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 DDS select. bit 0	ON	OFF	-
	01 DDS select. bit 1	ON	OFF	-
Dependency:	Refer to: r0051, p0820, p0821			
Note:	Drive data sets are selected via binector input p0820 and following.			
	The currently effective drive data set is displayed in r0051.			
	If there is only one data set, then a value of 0 is displayed in this parameter and not the selection via binector input.			
p0840[0...n]	BI: ON / OFF (OFF1) / ON / OFF (OFF1)			
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary	
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: 2501, 2610, 8720, 8820, 8920	
	Min	Max	Factory setting	
	-	-	[0] 2090.0	
	[1] 0			
	[2] 0			
	[3] 0			
Description:	Sets the signal source for the command "ON/OFF (OFF1)".			
	For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0).			
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriat signal change of the source.			
Dependency:	Refer to: p1055, p1056			
Caution:	When "master control from PC" is activated, this binector input is ineffective.			

1.2 List of parameters

Notice:	For binector input p0840 $=0$ signal, the motor can be moved, jogging using binector input p1055 or p1056.
	The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056.
	For binector input p0840 $=0$ signal, the switch-on inhibit is acknowledged.
	Only the signal source that originally powered up can also power down again.
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	For drives with closed-loop speed control (p1300 = 20), the following applies:
	- BI: p0840 = 0 signal: OFF1 (braking with the ramp-function generator, then pulse suppression and switch-on inhibit)
	For drives with closed-loop torque control (p1300 = 22), the following applies:
	- BI: p0840 = 0 signal: immediate pulse suppression
	For drives with closed-loop torque control (activated using p1501), the following applies:
	- BI: p0840 $=0$ signal: No dedicated braking response, but pulse cancelation when standstill is detected (p1226, p1227)
	For drives with closed-loop speed/torque control, the following applies:
	- BI: p0840 = 0/1 signal: ON (pulses can be enabled)

p0840[0...n]	Bl: ON / OFF (OFF1) / ON / OFF (OFF1)		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 2610, 8720, 8820, 8920
	Min	Max	Factory setting
	-	-	[0] 3333.0
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source for the command "ON/OFF (OFF1)".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 0 (STW1.0).		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p1055, p1056		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	For binector input p0840 $=0$ signal, the motor can be moved, jogging using binector input p1055 or p1056.		
	The command "ON/OFF (OFF1)" can be issued using binector input p0840 or p1055/p1056.		
	For binector input p0840 $=0$ signal, the switch-on inhibit is acknowledged.		
	Only the signal source that originally powered up can also power down again.		
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For drives with closed-loop speed control (p1300 = 20), the following applies:		
	- BI: p0840 = 0 signal: OFF1 (braking with the ramp-function generator, then pulse suppression and switch-on inhibit)		
	For drives with closed-loop torque control (p1300 = 22), the following applies:		
	- BI: p0840 = 0 signal: immediate pulse suppression		
	For drives with closed-loop torque control (activated using p1501), the following applies:		
	- BI: p0840 $=0$ signal: No dedicated braking response, but pulse cancelation when standstill is detected (p1226, p1227)		
	For drives with closed-loop speed/torque control, the following applies:		
	- BI: p0840 = 0/1 signal: ON (pulses can be enabled)		

p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 8720, 8820, 8920
	Min	Max	Factory setting
	-	-	[0] 2090.1
			[1] 1
			[2] 2090.1
			$\text { [3] } 2090.1$
Description:	Sets the first signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	BI : p0844 $=0$ signal or BI: $00845=0$ signal		
	- OFF2 (immediate pulse suppression and switch on inhibit)		
	BI : p0844 = 1 signal and BI: p0845 = 1 signal		
	- No OFF2 (enable is possible)		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0844[0...n]	BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 8720, 8820, 8920
	Min	Max	Factory setting
	-	-	1
Description:	Sets the first signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	BI: p0844 $=0$ signal or BI : $\mathrm{p} 0845=0$ signal		
	- OFF2 (immediate pulse suppression and switch on inhibit)		
	BI: p0844 = 1 signal and BI: p0845 = 1 signal		
	- No OFF2 (enable is possible)		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may b	result of p0922 or	be changed.

p0845[0...n]	BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 8720, 8820, 8920
	Min	Max	Factory setting
	-	-	1
Description:	Sets the second signal source for the command "No coast down/coast down (OFF2)".		
	The following signals are AND'ed:		
	- BI: p0844 "No coast-down / coast-down (OFF2) signal source 1"		
	- BI: p0845 "No coast-down / coast-down (OFF2) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 1 (STW1.1).		
	BI : p0844 $=0$ signal or BI : p0845 $=0$ signal		
	- OFF2 (immediate pulse suppression and switch on inhibit)		
	BI: p0844 = 1 signal and BI: p0845 = 1 signal		
	- No OFF2 (enable is possible)		
Caution:	When "master control from PC " is activated, this binector input is effective.		
1			
p0848[0...n]	BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-		[0] 2090.2
			[1] 1
			[2] 2090.2
			[3] 2090.2
Description:	Sets the first signal source for the command "No quick stop/quick stop (OFF3)".		
	The following signals are AND'ed:		
	- BI: p0848 "No quick stop / quick stop (OFF3) signal source 1"		
	- BI: p0849 "No quick stop / quick stop (OFF3) signal source 2"		
	For the PROFIdrive profile, the result of the AND logic operation corresponds to control word 1 bit 2 (STW1.2).		
	BI : p0848 $=0$ signal or BI : $\mathrm{p} 0849=0$ signal		
	- OFF3 (braking along the OFF3 ramp (p1135), then pulse suppression and switch on inhibit)		
	$\mathrm{BI}: \mathrm{p} 0848=1$ signal and BI: p0849 = 1 signal		
	- No OFF3 (enable is possible)		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	For drives with closed-loop torque control (activated using p1501), the following applies:		
	BI: p0848 = 0 signal:		
	- No dedicated braking response, but pulse suppression when standstill is detected (p1226, p1227).		

p0852[0...n]	BI: Enable operation/inhibit operation / Operation enable		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
			[0] 2090.3
			[1] 1
			[2] 2090.3
			[3] 2090.3
Description:	Sets the signal source for the command "enable operation/inhibit operation".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).		
	BI: p0852 $=0$ signal		
	Inhibit operation (suppress pulses).		
	BI: $\mathrm{p} 0852=1$ signal		
	Enable operation (pulses can be enabled).		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0852[0...n]	BI: Enable operation/inhibit operation / Operation enable		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable operation/inhibit operation".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 3 (STW1.3).		
	BI: p0852 $=0$ signal		
	Inhibit operation (suppress pulses).		
	BI: p0852 $=1$ signal		
	Enable operation (pulses can be enabled).		
Caution: \qquad !	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	$-$		[0] 2090.10
			[1] 1
			[2] 2090.10
			[3] 2090.10
Description:	Sets the signal source for the command "control by PLC/no control by PLC".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).		
	No control by PLC		
	BI: p0854 = 1 signal		
	Master control by PLC.		

Caution:	When "master control from PC" is activated, this binector input is ineffective.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1 .
	If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration (p0922 = 999).
p0854[0...n]	BI: Control by PLC/no control by PLC / Master ctrl by PLC
CU_G110M_USS	Access level: 3 Calculated: - Data type: U32 / Binary
	Can be changed: T Scaling: - Dyn. index: CDS, p0170
	Units group: - Unit selection: - Func. diagram: 2501
	Min Max Factory setting
	- 1
Description:	Sets the signal source for the command "control by PLC/no control by PLC".
	For the PROFIdrive profile, this command corresponds to control word 1 bit 10 (STW1.10).
	BI: p0854 = 0 signal
	No control by PLC
	BI: p0854 = 1 signal
	Master control by PLC.
Caution:	When "master control from PC" is activated, this binector input is ineffective.
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.
Note:	This bit is used to initiate a response for the drives when the control fails (F07220). If there is no control available, then binector input p0854 should be set to 1 .
	If a control is available, then STW1.10 must be set to 1 (PZD1) so that the received data is updated. This applies regardless of the setting in p0854 and even in the case of free telegram configuration ($p 0922=999$).

p0855[0...n]	Bl: Unconditionally release holding brake / Uncond open brake		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Mnit selection: -	Func. diagram: 2501, 2701
	Min	-	Factory setting

p0856[0...n]	BI: Speed controller enable / n_ctrl enable		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 2701
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable speed controller" (r0898.12). 0 signal: Set the I component and speed controller output to zero. 1 signal: Enable speed controller.		
Dependency:	Refer to: r0898		
Note:	If "enable speed controller" is withdrawn, then an existing brake will be closed. If "speed controller enable" is withdrawn, the pulses are not suppressed.		

p0857	Power unit monitoring time / PU t_monit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8760, 8864, 8964
	Min	Max	Factory setting
	100.0 [ms]	60000.0 [ms]	10000.0 [ms]
Description:	Sets the monitoring time for the power unit.		
	The monitoring time is started after an 0/1 edge of the ON/OFF1 command. If the power unit does not return a READY signal within the monitoring time, fault F07802 is output.		
Notice:	The maximum time to pre-charge the DC link is monitored in the power unit and cannot be changed. The maximum pre-charging duration depends on the power unit.		
	The monitoring time for the pre-charging is started after the ON command (BI: p0840 $=0 / 1$ signal). Fault F 30027 is output when the maximum pre-charging duration is exceeded.		
Note:	The factory setting for p0857 depends on the power unit.		
	The monitoring time for the ready signal of the power unit includes the time to pre-charge the DC link and, if relevant, the de-bounce time of the contactors.		
	If an excessively low value is entered into p0857, then after enable, this results in the corresponding fault.		
p0858[0...n]	BI: Unconditionally close holding brake / Uncond close brake		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 2701
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the command "unconditionally close holding brake".		
Dependency:	Refer to: p0855		
Note:	The signal via BI: p0858 (unconditionally close holding brake) has a higher priority than via BI: p0855 (unconditionally open holding brake).		
	For a 1 signal via BI : p 0858 , the command "unconditionally close the holding brake" is executed and internally a zero setpoint is entered.		

p0860	BI: Line contactor feedback signal / Line contact feedb		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	863.1
Description:	Sets the signal source for the feedback signal from the line contactor.		
Recommend.:	When the monitoring is activated (BI: p0860 not equal to r0863.1), then to control the line contactor, signal BO: r0863.1 of its own drive object should be used.		
Dependency:	Refer to: p0861, r0863		
Notice:	The line contactor monitoring is de-activated if the control signal of the particular drive object is set as the signal source for the feedback signal of the line contactor (BI: p0860 $=$ r0863.1).		
Note:	The state of the line contactor is monitored depending on signal BO: 08863.1 .		
	When the monitoring is activated (BI: p0860 not equal to r0863.1), fault F07300 is then also output if the contactor is closed before it is controlled using r0863.1.		

p0861	Line contactor monitoring time / LineContact t_mon			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	0 [ms]	5000 [ms]	100 [ms]	
Description:	Sets the monitoring time of the line contactor.			
	This time starts each time that the line contactor switches (r0863.1). If a feedback signal is not received from the line contactor within the time, a message is output.			
Dependency:	Refer to: p0860, r0863			
Note:	The monitoring function is disabled for the factory setting of p0860.			
r0863.1	CO/BO: Drive coupling status word/control word / CoupleZSW/STW			
	Access level: 3	Calculated: -	Data type:	
	Can be changed: -	Scaling: -	Dyn. index:	
	Units group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory set	
	-	-	-	
Description:	Displays the status and control words of the drive coupling.			
Bit field:	Bit Signal name 01 Energize contactor	1 signal Yes	0 signal No	FP
Note:	Re bit 01:			
	Bit 1 is used to control an external line contactor.			
p0881[0...n]	BI: Quick stop signal source 1 / QS s_src 1			
	Access level: 3	Calculated: -	Data type: U32 / Binary	
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
		-	1	
Description:	Sets signal source 1 for the "quick stop" function with the OFF1 command.			
Dependency:	Refer to: p0882, p0883, r0885, p0886, p1121			
Note:	The evaluation type (edge triggered, level triggered) is set using p0886.			
	QS: Quick Stop			
p0882[0...n]	BI: Quick stop signal source 2 / QS s_src 2			
	Access level: 3	Calculated: -	Data type:	
	Can be changed: T	Scaling: -	Dyn. index:	
	Units group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory set	
	-	-	1	
Description:	Sets signal source 2 for the "quick stop" function with the OFF1 command.			
Dependency:	Refer to: p0881, p0883, r0885, p0886, p1121			
Note:	The evaluation type (edge triggered, level triggered) is set using p0886.			

p0883[0...n]	BI: Quick stop override / QS override			
	Access level: 3	Calculated: -	Data type: U32 / Binary	
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	0	
Description:	Sets the signal source for the override of the "quick stop" function.			
	This signal is used to temporarily deactivate this function.			
	BI: p0883 = 1 signal:			
	Override is activated, quick stop is deactivated.			
	BI: p0883 $=0$ signal:			
	Override is deactivated, quick stop is activated.			
Dependency:	Refer to: p0881, p0882, r0885, p0886			
Note:	QS: Quick Stop			
r0885.0... 4	CO/BO: Quick stop status / QS status			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	-	
Description:	Display and BICO output for the status of the "quick stop" function.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	$\begin{array}{ll}00 & \text { Quick Stop active } \\ 01 & \text { Quick stop selected }\end{array}$	Yes	No	-
		Yes	No	-
	02 Override selected	Yes	No	-
	04 Quick stop enabled	Yes	No	-
Dependency:	Refer to: p0881, p0882, p0883, p0886			
Note:	QS: Quick Stop			
p0886[0...n]	Quick stop signal source evaluation type / QS s_src eval			
	Access level: 3	Calculated: -	Data type: Integer16	
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	0	4	2	
Description: Value:	Sets the evaluation type for signal sources 1 and 2 of the "quick stop" function.			
	0: Switched off 1: Quick stop input 1			
	2: Quick stop input 0 level			
	3: \quad Quick stop input 0/1 edge4: \quad Quick stop input $1 / 0$ edge			
Dependency:	Refer to: p0881, p0882, p0883, r0885			
Note:	QS: Quick Stop			
p0897	BI: Parking axis selection / Parking axis sel			
	Access level: 2	Calculated: -	Data type: U32 / Binary	
	Can be changed: T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	0	
Description:	Sets the signal source to s	"parking axis" function.		

Dependency:	BI: p0897 = 0 signal				
	The function "parking axis" is not selected.				
	BI: p0897 = 1 signal				
	The function "parking axis" is selected.				
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.				
Note:	After it has been selected the "parking axis" function only becomes active when the pulses are suppressed.				
r0898.0... 14	CO/BO: Control word sequence control / STW seq_ctrl				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: - S		Scaling: -	Dyn. index: -	
	Units group: - U		Unit selection: -	Func. diagram:	
	Min M		Max	Factory setting	
	-		-	-	
Description:	Displays the control word of the sequence control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
	01	OC / OFF2	Yes	No	-
	02	OC / OFF3	Yes	No	-
	03	Operation enable	Yes	No	-
	04	Ramp-function generator enable	Yes	No	-
	05	Continue ramp-function generator	r Yes	No	-
	06	Speed setpoint enable	Yes	No	-
		Command open brake	Yes	No	-
		Jog 1	Yes	No	-
		Jog 2	Yes	No	-
		Master ctrl by PLC	Yes	No	-
		Speed controller enable	Yes	No	-
		Command close brake	Yes	No	-
Note:	OC: Operating condition				
	Re bit 10:				
	If p0700 $=2$ is set, bit 10 always shows "1".				
r0899.0... 13	CO/BO: Status word sequence control / ZSW seq_ctrl				
	Access level: 2		Calculated: -	Data type: Unsigned16	
	Can be changed: - S		Scaling: -	Dyn. index: -	
	Units group: - U		Unit selection: -	Func. diagram:	
	Min M		Max	Factory setting	
	-		-	-	
Description:	Displays the status word of the sequence control.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Rdy for switch on	Yes	No	-
	01	Ready	Yes	No	-
	02	Operation enabled	Yes	No	-
	03	Jog active	Yes	No	-
	04	No coasting active	OFF2 inactive	OFF2 active	-
	05	No Quick Stop active	OFF3 inactive	OFF3 active	-
	06	Switching on inhibited active	Yes	No	-
	07	Drive ready	Yes	No	-
	08	Controller enable	Yes	No	-
	09	Control request	Yes	No	-
	11	Pulses enabled	Yes	No	-
	12	Open holding brake	Yes	No	-
	13	Command close holding brake	Yes	No	-
Note:	Re bits 00, 01, 02, 04, 05, 06, 09 :				
	For PROFIdrive, these signals are used for status word 1.				

r0945[0...63]	Fault code / Fault code		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8060
	Min	Max	Factory setting
	-	-	-
Description:	Displays the numbers of faults that have occurred.		
Dependency:	Refer to: r0947, r0948, r0949, r2109, r2130, r2133, r2136		
Notice:	The properties of the fault buffer should be taken from the corresponding product documentation.		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	Fault buffer structure (general principle):		
	r0945[0], r0949[0], r0948[0], r2109[0] --> actual fault case, fault 1		
	. .		
	r0945[7], r0949[7], r0948[7], r2109[7] --> actual fault case, fault 8		
	r0945[8], r0949[8], r0948[8], r2109[8] --> 1st acknowledged fault case, fault 1		
	r0945[15], r0949[15], r0948[15], r2109[15] --> 1st acknowledged fault case, fault 8		
	r0945[56], r0949[56], r0948[56], r2109[56] --> 7th acknowledged fault case, fault 1		
	r0945[63], r0949[63], r0948[63], r2109[63] --> 7th acknowledged fault case, fault 8		

r0946[0...65534]	Fault code list / Fault code list		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8060
	Min	Max	Factory setting
	-	-	-
Description:	Lists the fault codes stored in the drive unit.		
	The indices can only be accessed with a valid fault code.		
Dependency:	The parameter assigned to the fault code is entered in r0951 under the same index.		
r0947[0...63]	Fault number / Fault number		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8060
	Min	Max	Factory setting
	-	-	-
Description:	This parameter is ide		

r0948[0...63]	Fault time received in milliseconds / t_fault recv ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8060
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0949, r2109, r2130, r2133, r2136		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		

1.2 List of parameters

r0949[0...63]	Fault value / Fault value		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8060
	Min	Max	Factory setting
	-	-	-
Description:	Displays additional information about the fault that occurred (as integer number).		
Dependency:	Refer to: r0945, r0947, r0948, r2109, r2130, r2133, r2136		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
p0952	Fault cases counter / Fault cases qty		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1710, 8060
	Min	Max	Factory setting
	0	65535	0
Description:	Number of fault situations that have occurred since the last reset.		
Dependency:	The fault buffer is deleted (cleared) by setting p0952 to 0.		
	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133, r2136		
r0963	PROFIBUS baud rate / PB baud rate		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description: Value:	Displays the corresponding value for the PROFIBUS baud rate.		
	0: $\quad 9.6$ kbit/s		
	1: $\quad 19.2$ kbit/s		
	2: $\quad 93.75 \mathrm{kbit} / \mathrm{s}$		
	3: $\quad 187.5 \mathrm{kbit} / \mathrm{s}$		
	4: $\quad 500 \mathrm{kbit} / \mathrm{s}$		
	6: $\quad 1.5 \mathrm{Mbit} / \mathrm{s}$		
	7: $3 \mathrm{Mbit} / \mathrm{s}$		
	8: $6 \mathrm{Mbit} / \mathrm{s}$		
	9: $12 \mathrm{Mbit} / \mathrm{s}$		
	10: $31.25 \mathrm{kbit} / \mathrm{s}$		
	11: $45.45 \mathrm{kbit} / \mathrm{s}$		
	255: Unknown		
r0964[0...6]	Device identification / Device ident		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description: Index:	Displays the device identification.		
	[0] = Company (Siemens = 42)		
	[1] = Device type		
	[2] = Firmware version		
	[3] = Firmware date (year)		
	[4] = Firmware date (day/month)		
	[5] = Number of drive objects		
	[6] = Firmware patch/hot fix		

Note: \quad| Example: |
| :--- |
| r0964[0] $=42$--> SIEMENS |
| r0964[1] $=$ device type, see below |
| r0964[2] $=403$--> first part of the firmware version V04.03 (for second part, refer to index 6) |
| r0964[3] $=2010$--> year 2010 |
| r0964[4] $=1705$--> 17th of May |
| r0964[5] $=2$--> 2 drive objects |
| r0964[6] $=200$--> second part, firmware version (complete version: V04.03.02.00) |
| Device type: |
| r0964[1] $=6713$--> SINAMICS G110M USS |
| r0964[1] $=6710$--> SINAMICS G110M DP |
| r0964[1] $=6711$--> SINAMICS G110M PN |

$\mathbf{r 0 9 6 5}$
CU_G110M_DP
CU_G110M_PN

CU_G110M_PN
Description:

Description:

PROFIdrive profile number / PD profile number
Access level: 3
Can be changed: Units group: Min

Calculated: -
Data type: Unsigned16
Scaling: -
Unit selection: -
Max
Dyn. index: -
Func. diagram:
Factory setting

Displays the PROFIdrive profile number and profile version.
Constant value $=0329$ hex.
Byte 1: Profile number $=03$ hex $=$ PROFIdrive profile
Byte 2: Profile version $=29$ hex $=$ Version 4.1

Note: \quad When the parameter is read via PROFIdrive, the Octet String 2 data type applies.

p0969	System runtime relative / t_System relative		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8060
	Min	Max	Factory setting
	0 [ms]	4294967295 [ms]	0 [ms]
Description:	Displays the system runtime in ms since the last POWER ON.		
Note:	The value in p0969 can only be reset to 0 .		
	The value overflows after approx. 49 days.		
	When the parameter is read via PROFIdrive, the TimeDifference data type applies.		

p0970	Reset drive parameters / Drive par reset		
	Access level: 1	Calculated: -	Data type: Unsigned16
	Can be changed: $\mathrm{C}(1,30)$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	300	0
Description:	The parameter is used to initiate the reset of the drive parameters.		
	Parameters p0100, p0205 are not reset.		
	The following motor parameters are defined in accordance with the power unit: p0300 ... p0311.		
	When downloading settings $10,11,12$, the buffer memory mode is automatically deactivated (p0014 = 0).		
Value:	0 : Inactive		
	1: Start a parameter re		
	3: Start download of vola	ameters from RAM	
	5: Starts a safety para		
	10: Starts to download		
	11: Starts to download		
	12: Starts to download		
	100: Start a BICO interco	reset	
	300: Only Siemens int		

1.2 List of parameters

Caution:	When the buffer memory is active (see p0014), the actual parameters are backed up from RAM to ROM when a parameter set is loaded ($\mathrm{p} 0970=10,11,12$).
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$. Peculiarities of communication via PROFIBUS DP: - Communication with Class 1 masters (e.g. S7 controllers) is interrupted. - Communication with Class 2 masters (e.g. STARTER) is retained.
Note:	A factory setting run can only be started if p0010 was first set to 30 (parameter reset). At the end of the calculations, p0970 is automatically set to 0 . Parameter reset is completed with $\mathrm{p} 0970=0$ and $\mathrm{r} 3996[0]=0$. For p0970 $=5$ the following applies: The password for Safety Integrated must be set. When Safety Integrated is enabled, this can result in messages, which then require an acceptance test to be performed. Then save the parameters and carry out a POWER ON. For p0970 = 1 the following applies: If a Safety Integrated function is parameterized (p9601), then the safety parameters are not reset. In this case, an fault (F01659) is output with fault value 2. The following generally applies: One index of parameters p2100, p2101, p2118, p2119, p2126, p2127 is not reset, if a parameterized message is precisely active in this index.
p0971	Save parameters / Save par
Description:	Setting to save parameters in the non-volatile memory. When saving, only the adjustable parameters intended to be saved are taken into account.
Value:	0 : Inactive 1: Save drive object 10: Save in non-volatile memory as setting 10 11: Save in non-volatile memory as setting 11 12: \quad Save in non-volatile memory as setting 12
Dependency:	Refer to: p1960, r3996
Caution: Notice:	If a memory card (optional) is inserted, the following applies: The parameters are also saved on the card and therefore overwrite any existing data! The Control Unit power supply may only be powered down after data has been saved (i.e. after data save has been started, wait until the parameter again has the value 0). Writing to parameters is inhibited while saving. The progress while saving is displayed in r3996.
p0972	Drive unit reset / Drv_unit reset
Description: Value:	Sets the required procedure to execute a hardware reset for the drive unit. 0 : Inactive 1: Hardware-Reset immediate 2: Hardware reset preparation 3: Hardware reset after cyclic communication has failed

Danger:	It must be absolutely ensured that the system is in a safe condition.
!	The memory card/device memory of the Control Unit must not be accessed.
Note:	If value $=1$:
	Reset is immediately executed and communications interrupted.
	After communications have been established, check the reset operation (refer below).
	If value $=2$:
	Help to check the reset operation.
	Firstly, set p0972 $=2$ and then read back. Secondly, set p0972 $=1$ (it is possible that this request is possibly no longer acknowledged). The communication is then interrupted.
	After communications have been established, check the reset operation (refer below).
	If value $=3$:
	The reset is executed after interrupting cyclic communication. This setting is used to implement a synchronized reset by a control for several drive units.
	If cyclic communication is not active, then the reset is immediately executed.
	After communications have been established, check the reset operation (refer below).
	To check the reset operation:
	After the drive unit has been restarted and communications have been established, read p0972 and check the following:
	p0972 = 0? --> The reset was successfully executed.
	p0972 > 0? --> The reset was not executed.
r0980[0...299]	List of existing parameters 1 / List avail par 1
	Access level: 4 Calculated: - Data type: Unsigned16
	Can be changed: - Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	- - -
Description:	Displays the parameters that exist for this drive.
Dependency:	Refer to: r0981, r0989
Note:	The existing parameters are displayed in indices 0 to 298 . If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.
	This list consists solely of the following parameters:
	r0980[0...299], r0981[0...299] ... r0989[0...299]
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).
r0981[0...299]	List of existing parameters 2 / List avail par 2
	Access level: $4 \quad$ Calculated: - Data type: Unsigned16
	Can be changed: - Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	-
Description:	Displays the parameters that exist for this drive.
Dependency:	Refer to: r0980, r0989
Note:	The existing parameters are displayed in indices 0 to 298. If an index contains the value 0 , then the list ends here. In a long list, index 299 contains the parameter number at which position the list continues.
	This list consists solely of the following parameters:
	r0980[0...299], r0981[0...299] ... r0989[0...299]
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).

r0989[0...299]	List of existing parameters 10 / List avail par 10		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that exist for this drive.		
Dependency:	Refer to: r0980, r0981		
Note:	The existing parameters are displayed in indices 0 to 298. If an index contains the value 0 , then the list ends here.		
	This list consists solely of the following parameters:		
	r0980[0...299], r0981[0...299] ... r0989[0...299]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0990[0...99]	List of modified parameters 1 / List chang par 1		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive.		
Dependency:	Refer to: r0991, r0999		
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0991[0...99]	List of modified parameters 2 / List chang par 2		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays those parameters with a value other than the factory setting for this drive. Refer to: r0990, r0999		
Dependency:			
Note:	Modified parameters are displayed in indices 0 to 98 . If an index contains the value 0 , then the list ends here. In a long list, index 99 contains the parameter number at which position the list continues.		
	This list consists solely of the following parameters:		
	r0990[0...99], r0991[0...99] ... r0999[0...99]		
	The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be read from a higher-level control system (e.g. PROFIBUS master).		

r0999[0...99]	List of modified parameters $\mathbf{1 0} /$ List chang par 10		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
Description:	-	-	
Dependency:	Displays those parameters with a value other than the factory setting for this drive.		
	Refer to: r0990, ro991		

```
Note: Modified parameters are displayed in indices 0 to 98. If an index contains the value 0, then the list ends here.
This list consists solely of the following parameters:
r0990[0...99], r0991[0...99] ... r0999[0...99]
The parameters in this list are not displayed in the expert list of the commissioning software. However, they can be
read from a higher-level control system (e.g. PROFIBUS master).
```

p1000[0...n]	Speed setpoint selection / n_set sel
CU_G110M_DP	Access level: $1 \quad$ Calculated: -
CU_G110M_PN	Can be changed: T Scaling: -
	Units group: - Unit selection: -
	Min Max
	088
Description:	Sets the source for the speed setpoint.
	For single-digit values, the following applies:
	The value specifies the main setpoint.
	For double-digit values, the following applies:
	The left-hand digit specifies the supplementary setpoint, the righ Example:
	Value $=26$
	--> The analog setpoint (2) supplies the supplementary setpoint. --> The fieldbus (6) supplies the main setpoint.

Value

No main setpoint
Analog setpoint
Fixed speed setpoint
Fieldbus
Analog setpoint 2
Analog setpoint 3
Analog setpoint + no main setpoint
Analog setpoint + analog setpoint
Analog setpoint + fixed speed setpoint
Analog setpoint + fieldbus
Analog setpoint + analog setpoint 2
Analog setpoint + analog setpoint 3
Fixed speed setpoint + no main setpoint
Fixed speed setpoint + analog setpoint
Fixed speed setpoint + fixed speed setpoint
Fixed speed setpoint + fieldbus
Fixed speed setpoint + analog setpoint 2
Fixed speed setpoint + analog setpoint 3
Fieldbus + no main setpoint
Fieldbus + analog setpoint
Fieldbus + fixed speed setpoint
Fieldbus+fieldbus
Fieldbus + analog setpoint 2
Fieldbus + analog setpoint 3
Analog setpoint $2+$ no main setpoint
Analog setpoint $2+$ analog setpoint
Analog setpoint $2+$ fixed speed setpoint
Analog setpoint $2+$ fieldbus
Analog setpoint $2+$ analog setpoint 2
Analog setpoint $2+$ analog setpoint 3
Analog setpoint $3+$ no main setpoint
Analog setpoint $3+$ analog setpoint
Analog setpoint $3+$ fixed speed setpoint
Analog setpoint $3+$ fieldbus
Analog setpoint $3+$ analog setpoint 2
Analog setpoint $3+$ analog setpoint 3

1.2 List of parameters

Dependency:	When changing this parameter, the following settings are influenced:
	Refer to: $\mathrm{p} 1070, \mathrm{p} 1071, \mathrm{p} 1075, \mathrm{p} 1076$
Caution:	If p1000 is selected as the main setpoint of the fieldbus, the following BICO interconnection is set automatically:
C2051[1] = r0063	
Caution:	When executing a specific macro, the corresponding programmed settings are made and become active.
Notice:	The parameter is possibly protected as a result of p0922.
	For PROFIBUS/PROFINET Control Units, the following applies: The parameter can be freely set by setting p0922 =
	999.

p1000[0...n]	Speed setpoint selection / n_set sel	
CU_G110M_USS	Calculated: -	Sccess level: 1
	Can be changed: T	Unit selection: -
	Units group: -	Max
	Min	88
	0	Dyn. index: CDS, p0170

Value:
--> The analog setpoint (2) supplies the supplementary setpoint.
--> The fieldbus (6) supplies the main setpoint.
No main setpoint
Analog setpoint
Fixed speed setpoint
Fieldbus
Analog setpoint 2
Analog setpoint 3
Analog setpoint + no main setpoint
Analog setpoint + analog setpoint
Analog setpoint + fixed speed setpoint
Analog setpoint + fieldbus
Analog setpoint + analog setpoint 2
Analog setpoint + analog setpoint 3
Fixed speed setpoint + no main setpoint
Fixed speed setpoint + analog setpoint
Fixed speed setpoint + fixed speed setpoint
Fixed speed setpoint + fieldbus
Fixed speed setpoint + analog setpoint 2
Fixed speed setpoint + analog setpoint 3
Fieldbus + no main setpoint
Fieldbus + analog setpoint
Fieldbus + fixed speed setpoint
Fieldbus + fieldbus
Fieldbus + analog setpoint 2
Fieldbus + analog setpoint 3
Analog setpoint $2+$ no main setpoint
Analog setpoint $2+$ analog setpoint
Analog setpoint $2+$ fixed speed setpoint
Analog setpoint $2+$ fieldbus
Analog setpoint $2+$ analog setpoint 2
Analog setpoint $2+$ analog setpoint 3
Analog setpoint $3+$ no main setpoint
Analog setpoint $3+$ analog setpoint
Analog setpoint $3+$ fixed speed setpoint

No main setpoint
Fixed speed setpoint
Fieldbus
Analog setpoint 2
Analog setpoint + no main setpoint
22: Analog setpoint + analog setpoint
Analog setpoint + fixed speed setpoint
Analog setpoint + fieldbus
Analog
rixed sped sent + anal setpoint
32: \quad Fixed speed setpoint + analog setpoint
33: \quad Fixed speed setpoint + fixed speed setpoint
36: Fixed speed setpoint + fieldbus
37: Fixed speed setpoint + analog setpoint 2
38: Fixed speed setpoint + analog setpoint 3
60: Fieldbus + no main setpoint
62: Fieldbus + analog setpoint
63: Fieldbus + fixed speed setpoint
66: Fieldbus+fieldbus
67: Fieldbus + analog setpoint 2
68: \quad Fieldbus + analog setpoint 3
70: Analog setpoint $2+$ no main setpoint
72: Analog setpoint $2+$ analog setpoint
73: Analog setpoint $2+$ fixed speed setpoint
76: Analog setpoint $2+$ fieldbus
77: Analog setpoint $2+$ analog setpoint 2
78: Analog setpoint $2+$ analog setpoint 3
80: Analog setpoint $3+$ no main setpoint
82: Analog setpoint $3+$ analog setpoint
83: Analog setpoint $3+$ fixed speed setpoint

p1005[0...n]	CO: Fixed speed setpoint 5 / n_set_fixed 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 5.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1006[0...n]	CO: Fixed speed setpoint 6 / n_set_fixed 6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 6.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1007[0...n]	CO: Fixed speed setpoint 7 / n_set_fixed 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed/velocity setpoint 7.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1008[0...n]	CO: Fixed speed setpoint 8 / n_set_fixed 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed/velocity setpoint 8.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1009[0...n]	CO: Fixed speed setpoint 9 / n_set_fixed 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 9.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1010[0...n]	CO: Fixed speed setpoint 10 / n_set_fixed 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed/velocity setpoint 10.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1011[0...n]	CO: Fixed speed setpoint 11 / n_set_fixed 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed/velocity setpoint 11.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 12.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1013[0...n]	CO: Fixed speed setpoint 13 / n_set_fixed 13		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 13.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p1014[0...n]	CO: Fixed speed setpoint 14 / n_set_fixed 14		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed/velocity setpoint 14.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p1015[0...n]	CO: Fixed speed setpoint 15 / n_set_fixed 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1021, 3010
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets a value for the fixed speed / velocity setpoint 15.		
Dependency:	Refer to: p1020, p1021, p1022, p1023, r1024, r1197		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data		

p1016	Fixed speed setpoint mode / n_setp_fixed mode	
	Access level: $2 \quad$ Calculated: -	Data type: Integer16
	Can be changed: T Scaling: -	Dyn. index: -
	Units group: - Unit selection: -	Func. diagram: -
	Min Max	Factory setting
	12	1
Description:	Sets the mode to select the fixed speed setpoint.	
Value:	1: Direct selection 2: Selection binary coded	
Note:	Re p1016 = 1: In this mode, the fixed speed setpoint is entered using p1001 ... p1004. Re p1016 = 2 : In this mode, the fixed speed setpoint is entered using p1001 ... p1015.	

p1020[0...n]	BI: Fixed speed setpoint selection Bit $\mathbf{0} / \mathbf{n}$ _set_fixed Bit $\mathbf{0}$		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505
	Min	Max	Factory setting
	-	-	0

Description:	Sets the signal source for selecting the fixed speed setpoint.
Dependency:	Selects the required fixed speed setpoint using p1020 \ldots p1023.
	Displays the number of the actual fixed speed setpoint in r1197.
	Sets the values for the fixed speed setpoints $1 \ldots 15$ using p1001 $\ldots \mathrm{p} 1015$.
	Refer to: p1021, p1022, p1023, r1197
If a fixed speed setpoint has not been selected ($\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, \mathrm{r} 1197=0$), then $\mathrm{r} 1024=0($ setpoint $=0)$.	

p1020[0..n]	BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505
	Min	Max	Factory setting
	-	-	[0] 0
			[1] 1
			[2] 0
			[3] 0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r 1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1021, p1022, p1023, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 .. p1023 $=0, \mathrm{r} 1197=0$), then r1024 $=0($ setpoint $=0$).		

p1021[0...n]	BI: Fixed speed setpoint selection Bit 1 / n_set_fixed Bit 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1022, p1023, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 ... p1023 = 0, r1197 = 0), then r1024 = 0 (setpoint $=0$).		
p1022[0...n]	BI: Fixed speed setpoint selection Bit 2 / n_set_fixed Bit 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r 1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1021, p1023, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 ... p1023 $=0, \mathrm{r1197}=0$), then r1024 $=0$ (setpoint $=0$).		
p1023[0...n]	BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for selecting the fixed speed setpoint.		
Dependency:	Selects the required fixed speed setpoint using p1020 ... p1023.		
	Displays the number of the actual fixed speed setpoint in r 1197.		
	Sets the values for the fixed speed setpoints 1 ... 15 using p1001 ... p1015.		
	Refer to: p1020, p1021, p1022, r1197		
Note:	If a fixed speed setpoint has not been selected (p1020 \ldots p $1023=0, r 1197=0$), then r1024 $=0$ (setpoint $=0$).		
r1024	CO: Fixed speed setpoint effective / n_set_fixed eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1550, 3010
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the selected and effective fixed speed setpoint.		
	This setpoint is the output value for the fixed speed setpoints and must be appropriately interconnected (e.g. with the main setpoint).		
Recommend.:	Interconnect the signal with main setpoint (p1070).		

1.2 List of parameters

Dependency:	Selects the required fixed speed setpoint using p1020 $\ldots \mathrm{p} 1023$.
	Displays the number of the actual fixed speed setpoint in r1197.
	Sets the values for the fixed speed setpoints $1 \ldots 15$ using p1001 $\ldots \mathrm{p} 1015$.
Refer to: $\mathrm{p} 1070, \mathrm{r} 1197$	
Note:	If a fixed speed setpoint has not been selected $(\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, \mathrm{r} 1197=0)$, then $\mathrm{r} 1024=0($ setpoint $=0)$.

r1025.0	BO: Fixed speed setpoint s	atus / n_setp_fix		
	Access level: 3	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays the status when selecting the fixed speed setpoints.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Fixed speed setpoint selected	Yes	No	-
Dependency:	Refer to: p1016			
Note:	Re bit 00:			
	When the fixed speed setpoints are directly selected ($\mathrm{p} 1016=1$), this bit is set if at least 1 fixed speed setpoint is selected.			

p1030[0...n]	Motorized potentiometer configuration / Mop configuration		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	00000110 bin

Description: Sets the configuration for the motorized potentiometer.
Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
00	Data save active	Yes	No	
01	Automatic mode ramp-function generator	Yes	No	-
	active			-
02	Initial rounding-off active	Yes	No	-
03	Save in NVRAM active	Yes	No	-
04	Ramp-function generator always active	Yes	No	-

Notice: \quad For p0014 = 1, the following applies:
After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.
Note:

Re bit 00:

0 : The setpoint for the motorized potentiometer is not saved and after ON is entered using p1040.
1: The setpoint for the motorized potentiometer is saved after OFF and after ON set to the saved value. In order to save in a non-volatile fashion, bit 03 should be set to 1 .
Re bit 01:
0 : Without ramp-function generator in the automatic mode (ramp-up/ramp-down time $=0$).
1: With ramp-function generator in the automatic mode.
For manual operation (0 signal via BI : p 1041), the ramp-function generator is always active.
Re bit 02:
0 : Without initial rounding-off
1: With initial rounding-off. The selected ramp-up/down time is correspondingly exceeded. The initial rounding-off is a sensitive way of specifying small changes (progressive reaction when keys are pressed).
The jerk for the initial rounding-off is independent of the ramp-up time and only depends on the selected maximum speed (p1082). It is calculated as follows:
$r=0.01$ \% * p1082 [1/s] / 0.13^2 [s^2]
The jerk acts up until the maximum acceleration is reached (a_max = p1082 [1/s] / p1047 [s]), and then the drive continues to run linearly with a constant rate of acceleration. The higher the maximum acceleration (the lower that p1047 is), the longer the ramp-up time increases with respect to the set ramp-up time.

Re bit 03:
0 : Non-volatile data save de-activated.
1: The setpoint for the motorized potentiometer is saved in a non-volatile fashion (for bit $00=1$).
Re bit 04:
When the bit is set, the ramp-function generator is computed independent of the pulse enable. The actual output value of the motorized potentiometer is always in r1050.

p1035[0...n]	BI: Motorized potentiometer setpoint raise / Mop raise		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505, 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to continually increase the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r1050) depends on the set ramp-up time (p1047) and the duration of the signal that is present (BI: p1035).		
Dependency:	Refer to: p1036		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1036[0...n]	BI: Motorized potentiometer lower setpoint / Mop lower		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505, 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to continuously lower the setpoint for the motorized potentiometer.		
	The setpoint change (CO: r 1050) depends on the set ramp-down time (p 1048) and the duration of the signal that is present (BI: p1036).		
Dependency:	Refer to: p1035		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1037[0...n]	Motorized potentiometer maximum speed / MotP n_max		
	Access level: 3	Calculated: $0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the maximum speed/velocity for the motorized potentiometer.		
Note:	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value (see function diagram 3020).		
p1038[0...n]	Motorized potentiometer minimum speed / MotP n_min		
	Access level: 3	Calculated: $0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the minimum speed/velocity for the motorized potentiometer.		
Note:	This parameter is automatically pre-assigned in the commissioning phase.		
	The setpoint output from the motorized potentiometer is limited to this value (see function diagram 3020).		

p1039[0...n]	BI: Motorized potentiometer inversion / MotP inv		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to invert the minimum speed/velocity or the maximum speed/velocity for the motorized potentiometer.		
Dependency:	Refer to: p1037, p1038		
Note:	The inversion is only active during "motorized potentiometer raise" or "motorized potentiometer lower".		
p1040[0...n]	Motorized potentiometer starting value / Mop start value		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min	Max	Factory setting
	-210000.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the starting value for the motorized potentiometer. This starting value becomes effective after the drive has been powered up.		
Dependency:	Only effective if p1030.0 $=0$.		
	Refer to: p1030		
p1041[0...n]	BI: Motorized potentiometer manual/automatic / Mop manual/auto		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to change over from manual to automatic when using a motorized potentiometer. In the manual mode, the setpoint is changed using two signals - raise and lower. In the automatic mode, the setpoint must be interconnected via a connector input.		
Dependency:	Refer to: p1030, p1035, p1036, p1042		
Note:	The effectiveness of the internal ramp-function generator can be set in automatic mode.		
p1042[0...n]	CI: Motorized potentiometer automatic setpoint / Mop auto setpoint		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint of the motorized potentiometer in the automatic mode.		
Dependency:	Refer to: p1041		
p1043[0...n]	BI: Motorized potentiometer accept setting value / MotP acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to accept the setting value for the motorized potentiometer. Refer to: p1044		
Dependency:			
Note:	The setting value (CI: p1044) becomes effective for a 0/1 edge of the setting command (BI: p1043).		

p1044[0...n]	CI: Motorized potentiometer setting value / Mop set val		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setting value for the motorized potentiometer.		
Dependency:			
Note:	The setting value (CI: p1044) becomes effective for a $0 / 1$ edge of the setting command (BI: p1043).		
r1045	CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3020
	Min		Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator.		
p1047[0...n]	Motorized potentiometer ramp-up time / Mop ramp-up time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer.		
	The setpoint is changed from zero up to the speed/velocity limit (p 1082) within this time (if no initial rounding-off has been activated).		
Dependency:	Refer to: p1030, p1048, p1082		
Note:	When the initial rounding-off is activated (p1030.2) the ramp-up time is correspondingly extended.		
p1048[0...n]	Motorized potentiometer ramp-down time / Mop ramp-down time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3020
	Min	Max	Factory setting
	0.000 [s]	1000.000 [s]	10.000 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer. The setpoint is changed from the speed/velocity limit (p1082) to zero within this time (if no initial rounding-off has been activated).		
Dependency:	Refer to: p1030, p1047, p1082		
Note:	The deceleration time is extended corresponding to the activated initial rounding-off (p1030.2).		
r1050	CO: Motor. potentiometer setpoint after the ramp-function generator / Mop setp after RFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1550, 3020
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Sets the effective setpoint after the internal motorized potentiometer ramp-function generator. This setpoint is the output value of the motorized potentiometer and must be appropriately interconnected onwards (e.g. with the main setpoint).		

1.2 List of parameters

Recommend::	Interconnect the signal with main setpoint (p1070).
Dependency:	Refer to: p1070
Note:	For "With ramp-function generator", after an OFF1, OFF2, OFF3 or for a 0 signal via BI: p0852 (inhibit operation,
	suppress pulses) the ramp-function generator output (r1050) is set to the starting value (configuration via p1030.0).

p1051[0...n]	CI: Speed limit RFG positive direction of rotation / n_limit RFG pos		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	-	1083[0]
Description:	Sets the signal source for the speed limit of the positive direction on the ramp-function generator input.		
Note:	The OFF3 ramp-down time (p 1135) is effective when the limit is reduced.		
p1052[0...n]	CI: Speed limit RFG negative direction of rotation / n_limit RFG neg		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	-	1086[0]
Description:	Sets the signal source for the speed limit of the negative direction on the ramp-function generator input.		
Note:	The OFF3 ramp-down time (p 1135) is effective when the limit is reduced.		
p1055[0...n]	BI: Jog bit 0 / Jog bit 0		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 3030
	Min	Max	Factory setting
	-	-	[0] 0
			[1] 722.0
			[2] 0
			[3] 0

Description:	Sets the signal source for jog 1.
Recommend.: \quad When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate	

Dependency: Refer to: p0840, p1058
Notice: \quad The drive is enabled for jogging using BI: p1055 or BI: p1056.
The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.
Only the signal source that was used to power up can also be used to power down again.

p1055[0...n]	BI: Jog bit 0 / Jog bit 0		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Units group: -	Unit selection: -
	Min	Max	Func. diagram: 2501, 3030
	-	-	Factory setting

p1056[0...n]	BI: Jog bit 1 / Jog bit 1		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 3030
	Min	Max	Factory setting
	-	-	$[0] 0$
			$[1] 722.1$
		$[2] 0$	
		$[3] 0$	

Description:	Sets the signal source for jog 2.
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate
	signal change of the source.
Dependency:	Refer to: p0840, p1059
Notice:	The drive is enabled for jogging using BI: p1055 or BI: p1056.
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.
	Only the signal source that was used to power up can also be used to power down again.

p1056[0...n]	BI: Jog bit 1 / Jog bit 1		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501, 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for jog 2.		
Recommend.:	When the setting for this binector input is changed, the motor can only be switched on by means of an appropriate signal change of the source.		
Dependency:	Refer to: p0840, p1059		
Notice:	The drive is enabled for jogging using BI : p1055 or $\mathrm{BI}: \mathrm{p} 1056$.		
	The command "ON/OFF1" can be issued using BI: p0840 or using BI: p1055/p1056.		
	Only the signal source that was used to power up can also be used to power down again.		

p1058[0...n]	Jog 1 speed setpoint / Jog $1 \mathbf{n}$ _set		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1550, 3030
	Min	Max	Factory setting
	$-210000.000[\mathrm{rpm}]$	$210000.000[\mathrm{rpm}]$	150.000 [rpm]
Description:	Sets the speed/velocity for jog 1. Jogging is level-triggered and allows the motor to be incrementally moved.		
Dependency:	Refer to: p1055, p1056		

p1059[0...n]	Jog 2 speed setpoint / Jog 2 n_set		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1550,3030
	Min	Max	Factory setting
	$-210000.000[\mathrm{rpm}]$	$210000.000[\mathrm{rpm}]$	-150.000 [rpm]
Description:	Sets the speed/velocity for jog 2. Jogging is level-triggered and allows the motor to be incrementally moved.		
Dependency:	Refer to: p1055, p1056		

p1063[0...n]	Speed limit setpoint channel / n_limit setp			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3040	
	Min	Max	Factory setting	
	0.000 [rpm]	210000.000 [rpm]	210000.000 [rpm]	
Description:	Sets the speed limit/velocity limit effective in the setpoint channel.			
Dependency:				
p1070[0...n]	CI: Main setpoint / Main setpoint			
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32	
CU_G110M_PN	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: 1550, 3030	
	Min	Max	Factory setting	
	-	-	[0] 2050[1]	
			[1] 0	
			[2] 0	
			[3] 0	
Description:	Sets the signal source for the main setpoint.			
	r1024: Fixed speed setpoint effective			
	r1050: Motor. potentiometer setpoint after the ramp-function generator			
Dependency:	Refer to: p1071, r1073, r1078			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.			
p1070[0...n]	CI: Main setpoint / Main setpoint			
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32	
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: 1550, 3030	
	Min	Max	Factory setting	
	-	-	[0] 755[2]	
			[1] 1024[0]	
			[2] 0	
			[3] 0	
Description:	Sets the signal source for the main setpoint.			
	r1024: Fixed speed setpoint effective			
	r1050: Motor. potentiometer setpoint after the ramp-function generator			
Dependency:	Refer to: p1071, r1073, r1078			
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.			
p1071[0...n]	CI: Main setpoint scaling / Main setp scal			
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32	
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170	
	Units group: -	Unit selection: -	Func. diagram: 1550, 3030	
	Min	Max	Factory setting	
	-	-	1	
Description:	Sets the signal source for scaling the main setpoint.			

r1073	CO: Main setpoint effective / Main setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective main setpoint.		
	The value shown is the main setpoint after scaling.		
p1075[0...n]	CI: Supplementary setpoint / Suppl setp		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 1550, 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the supplementary setpoint.		
Dependency:	Refer to: p1076, r1077, r1078		
p1076[0...n]	CI: Supplementary setpoint scaling / Suppl setp scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 1550, 3030
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the supplementary setpoint.		
r1077	CO: Supplementary setpoint effective / Suppl setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective supplementary setpoint. The value shown is the additional setpoint after scaling.		
r1078	CO: Total setpoint effective / Total setpoint eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the total effective setpoint.		
	The value indicates the sum of the effective main setpoint and supplementary setpoint.		
p1080[0...n]	Minimum speed / n_min		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	19500.000 [rpm]	0.000 [rpm]
Description:	Sets the lowest possible motor speed. This value is not undershot in operation.		

1.2 List of parameters

Dependency:	Refer to: p 1106
Notice:	The effective minimum speed is formed from p1080 and p 1106.
Note:	The parameter value applies for both motor directions.
	In exceptional cases, the motor can operate below this value (e.g. when reversing).

p1082[0...n]	Maximum speed / n_max		
	Access level: 1	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1)$, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3020, 3050, 3060, 3070, 3095
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	1500.000 [rpm]
Description:	Sets the highest possible speed.		
	Example:		
	Induction motor p0310 $=50 / 60 \mathrm{~Hz}$ without output filter and Blocksize power unit		
	p1082 <= $60 \times 240 \mathrm{~Hz} / \mathrm{r0313}$ (vector control)		
	p1082 <= $60 \times 650 \mathrm{~Hz} / \mathrm{r} 0313$ (U/f control)		
Dependency:	For vector control, the maximum speed is restricted to $60.0 /(8.333 \times 500 \mu \mathrm{~s} \times \mathrm{r} 0313$). This can be identified by a reduction in r1084. p1082 is not changed in this process due to the fact that the operating mode p1300 can be changed over.		
	If a sine-wave filter $(\mathrm{p} 0230=3)$ is parameterized as output filter, then the maximum speed is limited corresponding to the maximum permissible filter output frequency (refer to the filter data sheet). When using sine-wave filters (p0230 = 3,4), the maximum speed r1084 is limited to 70% of the resonant frequency of the filter capacitance and the motor leakage inductance.		
	For reactors and dU/dt filters, it is limited to $120 \mathrm{~Hz} / \mathrm{r0313}$.		
	Refer to: r0313, p0322		
Notice:	After the value has been modified, Modifications can be made again	further parameter modific $n \mathrm{r} 3996=0$.	made and the status is shown in r3996.
Note:	The parameter applies for both motor directions.		
	The parameter has a limiting effect and is the reference quantity for all ramp-up and ramp-down times (e.g. down ramps, ramp-function generator, motor potentiometer).		
	The parameter is part of the quick commissioning ($\mathrm{p} 0010=1$); this means that it is appropriately pre-assigned when changing p0310, p0311, p0322.		
	The following limits are always effective for p 1082 :		
	p1082 <= $60 \times$ minimum ($15 \times \mathrm{r0310}, 650 \mathrm{~Hz}$) / r0313		
	p1082 <= $60 \times$ maximum power unit pulse frequency / ($\mathrm{x} \times \mathrm{r0313}$), with $\mathrm{k}=12$ (vector control), $k=6.5$ (U/f control)		
	During automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$), the parameter value is assigned the maximum motor speed (p 0322). For $\mathrm{p} 0322=0$ the rated motor speed (p 0311) is used as default (pre-assignment) value. For induction motors, the synchronous no-load speed is used as the default value ($\mathrm{p} 0310 \times 60 / \mathrm{r0313}$).		
	For synchronous motors, the following additionally applies:		
	During automatic calculation (p0340, p3900), p1082 is limited to speeds where the EMF does not exceed the DC link voltage. p1082 is also available in the quick commissioning ($p 0010=1$); this means that when exiting via p3900 > 0, the value is not changed.		

p1083[0...n]	CO: Speed limit in positive direction of rotation $/ \mathbf{n}$ _limit pos		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: $3 _1$	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	$0.000[r p m]$	$210000.000[\mathrm{rpm}]$	
Description:	Sets the maximum speed for the positive direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

r1084	CO: Speed limit positive effective / n_limit pos eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050, 3095
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective positive speed limit.		
Dependency:	Refer to: p1082, p1083, p1085		
p1085[0...n]	CI: Speed limit in positive direction of rotation / n_limit pos		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	-	1083[0]
Description:	Sets the signal source for the speed limit of the positive direction.		
p1086[0...n]	CO: Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	-210000.000 [rpm]	0.000 [rpm]	-210000.000 [rpm]
Description:	Sets the speed limit for the negative direction.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
r1087	CO: Speed limit negative effective / n_limit neg eff		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050, 3095
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective negative speed limit.		
Dependency:	Refer to: p1082, p1086, p1088		
p1088[0...n]	CI: Speed limit in negative direction of rotation / n_limit neg		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	-	1086[0]
Description:	Sets the signal source for the speed/velocity limit of the negative direction.		
p1091[0...n]	Skip speed 1 / n_skip 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 1.		
Dependency:	Refer to: p1092, p1093, p1094, p1101		

1.2 List of parameters

Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.
Note:	The skip (suppression) speeds can be used to prevent the effects of mechanical resonance.

p1092[0...n]	Skip speed 2 / n_skip 2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 2.		
Dependency:	Refer to: p1091, p1093, p1094, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
p1093[0...n]	Skip speed 3 / n_skip 3		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 3.		
Dependency:	Refer to: p1091, p1092, p1094, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		
p1094[0...n]	Skip speed 4 / n_skip 4		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets skip speed 4.		
Dependency:	Refer to: p1091, p1092, p1093, p1101		
Notice:	Skip bandwidths can also become ineffective as a result of the downstream limits in the setpoint channel.		

p1098[0...n]	CI: Skip speed scaling / n_skip scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the skip speeds.		
Dependency:	Refer to: p1091, p1092, p1093, p1094		
r1099.0	CO/BO: Skip band status word / Skip band ZSW		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Display and BICO output for the skip bands.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 r1170 within the skip band	Yes	No 3050
Dependency:	Refer to: r1170		

Note:	Re bit 00:
With the bit set, the setpoint speed is within the skip band after the ramp-function generator (r1170).	
The signal can be used to switch over the drive data set (DDS).	

p1101[0...n]	Skip speed bandwidth / n_skip bandwidth		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	0.000 [rpm]	210000.000 [rpm]	0.000 [rpm]
Description:	Sets the bandwidth for the skip speeds/velocities 1 to 4.		
Dependency:	Refer to: p1091, p1092, p1093, p1094		
Note:	The setpoint (reference) speeds are skipped (suppressed) in the range of the skip speed +/-p1101.		
	Steady-state operation is not possible in the skipped (suppressed) speed range. The skip (suppression) range is skipped.		
	Example:		
	p1091 = 600 and p1101 = 20		
	--> setpoint speeds between 580 and 620 [rpm] are skipped.		
	For the skip bandwidths, the following hysteresis behavior applies:		
	For a setpoint speed coming from below, the following applies:		
	$\mathrm{r} 1170<580$ [rpm] and $580[\mathrm{rpm}]<=\mathrm{r} 1114<=620[\mathrm{rpm}]-->\mathrm{r} 1119=580$ [rpm]		
	For a setpoint speed coming from above, the following applies:		
	$\mathrm{r} 1170>620$ [rpm] and $580[\mathrm{rpm}]<=\mathrm{r} 1114$ <= 620 [rpm] --> r1119 $=620$ [rpm]		

p1106[0...n]	CI: Minimum speed signal source /n_min s_src		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3050
	Min	-	Factory setting
	-	0	
Description:	Sets the signal source for lowest possible motor speed.		
Dependency:	Refer to: p1080		
Notice:	The effective minimum speed is formed from p1080 and p1106.		

p1108[0...n]	BI: Total setpoint selection / Total setp sel		
	Access level: 4	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the total setpoint.		
Dependency:	The selection of the total speed setpoint is automatically interconnected to the status word of the technology controller (r 2349.4) if the technology controller is selected ($\mathrm{p} 2200>0$) and operated in the mode p2251 $=0$. Refer to: p1109		
Caution:	If the technology con interconnection to its	y the total setpoint 349.4).	it is not permissible to withdraw the

p1109[0..n]	CI: Total setpoint / Total setp		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the total setpoint.		
	For p1108 = 1 signal, the total setpoint is read in via p1109.		
Dependency:	The signal source of the total setpoint is automatically interconnected to the output of the technology controller (r2294) if the technology controller is selected (p2200 > 0) and operated in the mode p2251 $=0$. Refer to: p1108		
Caution:	If the technology controller is to supply the total setpoint using $p 1109$, then it is not permissible to disable the interconnection to its output (r2294).		
p1110[0...n]	BI: Inhibit negative direction / Inhib neg dir		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505, 3040
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to disable the negative direction.		
Dependency:	Refer to: p1111		
p1111[0...n]	BI: Inhibit positive direction / Inhib pos dir		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505, 3040
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to disable the positive direction.		
Dependency:	Refer to: p1110		
r1112	CO: Speed setpoint after minimum limiting / n_set aft min_lim		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3050
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint after the minimum limiting.		
Dependency:	Refer to: p1091, p1092, p1093, p1094, p1101		
p1113[0...n]	BI: Setpoint inversion / Setp inv		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2441, 2442, 2505, 3040
	Min	Max	Factory setting
	-	-	[0] 2090.11
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to invert the setpoint.		

Dependency:
Caution:

Refer to: r1198
If the technology controller is being used as the speed main setpoint ($\mathrm{p} 2251=0$), do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.
Notice: \quad The parameter may be protected as a result of p0922 or p2079 and cannot be changed.

p1113[0...n]	BI: Setpoint inversion / Setp inv		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2441, 2442, 2505, 3040
	Min	Max	Factory setting
	-	-	[0] 3333.1
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source to invert the setpoint.		
Dependency:	Refer to: r1198		
Caution:	If the technology controller is being used as the speed main setpoint (p2251=0), do not invert the setpoint using p1113 when the technology controller is enabled because this can cause the speed to change suddenly and lead to positive couplings in the control loop.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

r1114	CO: Setpoint after the direction limiting / Setp after limit		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1550, 3040, 3050
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed/velocity setpoint after the changeover and limiting the direction.		
p1115	Ramp-function generator selection / RFG selection		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1550, 3080
	Min	Max	Factory setting
	0	1	1
Description:	Sets the ramp-function generator type.		
Value:	0: Basic ramp-function generator 1: Extended ramp-function generator		
Note:	Another ramp-function generator type can only be selected when the motor is at a standstill.		
r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1550, 1690, 3050, 3060, 3070
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the setpoint at the input of the ramp-function generator.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	The setpoint is influenced by other functions, e.g. skip (suppressed) speeds, minimum and maximum limits.		

p1120[0...n]	Ramp-function generator ramp-up time / RFG ramp-up time		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3060, 3070
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	The ramp-function generator ramps-up the speed setpoint from standstill (setpoint $=0$) up to the maximum speed (p 1082) in this time.		
Dependency:	Refer to: p1082, p1123		
Note:	The ramp-up time can be scaled via connector input p1138.		
	The parameter is adapted during the rotating measurement ($\mathrm{p} 1960>0$). This is the reason that during the rotating measurement, the motor can accelerate faster than was originally parameterized.		
	For U/f control and sensorless vector control (see p1300), ramp-up times of 0 s are not expedient. The setting should be based on the startup times (r0345) of the motor.		
p1121[0...n]	Ramp-function generator ramp-down time / RFG ramp-down time		
	Access level: 1	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3060, 3070
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	10.000 [s]
Description:	Sets the ramp-down time for the ramp-function generator.		
	The ramp-function generator ramps-down the speed setpoint from the maximum speed (p1082) down to standstill (setpoint $=0$) in this time.		
	Further, the ramp-down time is always effective for OFF1.		
Dependency:	Refer to: p1082, p1123		
Note:	For U/f control and sensorless vector control (see p1300), ramp-down times of 0 s are not recommended. The setting should be based on the startup times (r0345) of the motor.		
p1122[0...n]	BI: Bypass ramp-function generator / Bypass RFG		
	Access level: 4	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2505
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for bypassing the ramp generator (ramp-up and ramp-down times $=0$).		
Caution: \qquad 1	If the technology controller is operated in mode p2251 $=0$ (technology controller as main speed setpoint), then it is not permissible to disable the interconnection to its status word (r2349).		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	In the case of sensorless vector control, the ramp-function generator must not be bypassed, other than indirectly by means of interconnection with r2349.		
p1123[0...n]	Ramp-function generator minimum ramp-up time / RFG t_RU min		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	0.000 [s]
Description:	Sets the minimum ramp-up time.		
	The ramp-up time (p1120) is limited internally to this minimum value.		
Dependency:	Refer to: p1082		
Note:	The setting should be based on the startup times (r0345) of the motor. If the maximum speed p1082 changes, p 1123 is re-calculated.		

p1127[0...n]	Ramp-function generator minimum ramp-down time / RFG t_RD min		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	999999.000 [s]	0.000 [s]
Description:	Sets the minimum ramp-down time.		
	The ramp-down time (p1121) is limited internally to this minimum value.		
Dependency:	Refer to: p1082		
Note:	For U/f control and sensorless vector control (see p1300), ramp-down times of 0 s are not recommended. The setting should be based on the startup times (r0345) of the motor.		
	If the maximum speed p1082 changes, p1127 is re-calculated.		
	If a braking resistor is connected to the DC link ($\mathrm{p} 0219>0$), then the minimum ramp-down time is automatically adapted using p1127.		
p1130[0...n]	Ramp-function generator initial rounding-off time / RFG t_start_round		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the initial rounding-off time for the extended ramp generator. The value applies to ramp-up and ramp-down.		
Note:	Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		
p1131[0...n]	Ramp-function generator final rounding-off time / RFG t_end_delay		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the final rounding-off time for the extended ramp generator.		
	The value applies to ramp-up and ramp-down.		
Note:	Rounding-off times avoid an abrupt response and prevent damage to the mechanical system.		
p1134[0...n]	Ramp-function generator rounding-off type / RFG round-off type		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0	1	0
Description:	Sets the smoothed response to the OFF1 command or the reduced setpoint for the extended ramp-functio generator.		
Value:	$\begin{array}{ll}0: & \text { Cont smoothing } \\ \text { 1: } & \text { Discont smoothing }\end{array}$		
Dependency:	No effect up to initial rounding-off time (p1130) > 0 s .		
Note:	p1134 = 0 (continuous smoothing)		
	If the setpoint is reduced while ramping-up, initially a final rounding-off is carried out and then the ramp-up completed. During the final rounding-off, the output of the ramp-function generator continues to go in the direction of the previous setpoint (overshoot). After the final rounding-off has been completed, the output goes toward the new setpoint. p1134 = 1 (discontinuous smoothing) If the setpoint is reduced while ramping-up, then the output goes immediately in the direction of the new setpoint. For the setpoint change there is no rounding-off.		

p1135[0...n]	OFF3 ramp-down time / OFF3 t_RD		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: $\mathrm{C}(1), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3060, 3070
	Min	Max	Factory setting
	0.000 [s]	5400.000 [s]	0.000 [s]
Description:	Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.		
Note:	This time can be exceeded if the DC link voltage reaches its maximum value.		
p1136[0...n]	OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the initial rounding-off time for OFF3 for the extended ramp generator.		
p1137[0...n]	OFF3 final rounding-off time / RFG OFF3 t_end_del		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3070
	Min	Max	Factory setting
	0.000 [s]	30.000 [s]	0.000 [s]
Description:	Sets the final rounding-off time for OFF3 for the extended ramp generator.		
p1138[0...n]	CI: Up ramp scaling / Up ramp scaling		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3060, 3070
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the up ramp.		
Dependency:	Refer to: p1120		
Note:	The ramp-up time is set in p1120.		
p1139[0...n]	CI: Down ramp scaling / Down ramp scaling		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3060, 3070
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for scaling the down ramp.		
Dependency:	Refer to: p1121		
Note:	The ramp-down time is set in p 1121 .		

1.2 List of parameters

Dependency:	Refer to: r0054, p1140, p1142
Caution:	When "master control from PC" is activated, this binector input is ineffective.

Notice: The ramp-function generator is, independent of the state of the signal source, active in the following cases: - OFF1/OFF3.

- ramp-function generator output within the suppression bandwidth.
- ramp-function generator output below the minimum speed.

p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2501
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the command "enable setpoint/inhibit setpoint".		
	For the PROFIdrive profile, this command corresponds to control word 1 bit 6 (STW1.6).		
	BI: p1142 $=0$ signal		
	Inhibits the setpoint (the ramp-function generator input is set to zero).		
	BI: p1142 = 1 signal		
	Setpoint enable.		
Dependency:	Refer to: p1140, p1141		
Caution:	When "master control from PC" is activated, this binector input is ineffective.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	When the function module "position control" (r0108.3 = 1) is activated, this binector input is interconnected as follows as standard:		
	$\mathrm{BI}: \mathrm{p} 1142=0$ signal		
p1143[0...n]	BI: Ramp-function generator, accept setting value / RFG accept set v		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3060, 3070
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for accepting the setting value of the ramp-function generator.		
Dependency:	The signal source for the ramp-function generator setting value is set using parameters.		
Note:	0/1 signal:		
	The ramp-function generator output is immediately (without delay) set to the setting value of the ramp-function generator.		
	The setting value of the ramp-function generator is effective.		
	1/0 signal:		
	The input value of the ramp-function generator is effective. The ramp-function generator output is adapted to the input value using the ramp-up time or the ramp-down time.		
	0 signal:		
	The input value of the ramp-function generator is effective.		
p1144[0...n]	CI: Ramp-function generator setting value / RFG setting value		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 3060, 3070
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the ramp-function generator setting value.		
Dependency:	The signal source for accepting the setting value is set using parameters.		
	Refer to: p1143		

p1145[0...n]	Ramp-function generator tracking intensity. / RFG track intens		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 3080
	Min	Max	Factory setting
	0.0	50.0	0.0
Description:	Sets the ramp-function generator tracking.		
	The output value of the ramp-function generator is tracked (corrected) corresponding to the maximum possible drive acceleration. The reference value is the deviation at the speed/velocity controller input that is necessary to ensure that the motor accelerates at the torque/force limit.		
Recommend.:	p1145 = 0.0:		
	This value de-activates the ramp-function generator tracking.		
	Generally, these values are not practical. They cause the motor to accelerate below its torque limit. The lower the selected value, the greater the margin between the controller and torque limit when accelerating.p1145 > 1.0:		
	The greater the value, the higher the permissible deviation between the speed setpoint and speed actual value.		
Notice:	If ramp-function generator tracking is activated and the ramp time is set too short, this can cause unsteady acceleration.		
	Remedy:		
	- switch off ramp-function generator tracking (p1145 = 0).		
	- increase the ramp-up/ramp-down time (p1120, p1121).		
Note:	In the U/f mode, ramp-function generator tracking is not active.		
p1148[0...n]	Ramp-function gen. tolerance for ramp-up and ramp-down active / RFG tol HL/RL act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3060, 3070
	Min	Max	Factory setting
	0.000 [rpm]	1000.000 [rpm]	19.800 [rpm]
Description:	Sets the tolerance value for the status of the ramp-function generator (ramp-up active, ramp-down active). If the input of the ramp-function generator does not change in comparison to the output by more than the entered tolerance time, then the status bits "ramp-up active" and "ramp-down active" are not influenced.		
Dependency:	Refer to: r1199		
r1149	CO: Ramp-function generator acceleration / RFG acceleration		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2007	Dyn. index: -
	Units group: 39_1	Unit selection: p0505	Func. diagram: 3060, 3070
	Min	Max	Factory setting
	- [rev/s ${ }^{2}$]	- [rev/s²]	- [rev/s ${ }^{\text {² }}$]
Description:	Displays the acceleration of the ramp-function generator.		
Dependency:	Refer to: p1145		
r1150	CO: Ramp-function generator speed setpoint at the output / RFG n_set at outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1550, 3080
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the setpoint at the output of the ramp-function generator.		

p1155[0...n]	CI: Speed controller speed setpoint $1 / \mathrm{n}$ _ctrl n_set 1		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 1550, 3080, 5030, 6031
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for speed setpoint 1 of the speed controller.		
Dependency:	The effectiveness of this setpoint depends on, e.g. STW1.4 and STW1.6.		
	The signal source of the total setpoint is automatically interconnected to the output of the technology controller (r 2294) if the technology controller is selected ($\mathrm{p} 2200>0$) and operated in the mode $\mathrm{p} 2251=1$.		
	Refer to: r0002, p0840, p0844, p0848, p0852, p0854, r0898, p1140, p1142, p1160, r1170		
Caution: \qquad	If the technology controller is activated, then it is not permissible to withdraw the parameter interconnection.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1160[0...n]	CI: Speed controller speed setpoint 2 / n_ctrl n_set 2		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 1550, 3080
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for speed setpoint 2 of the speed controller.		
Dependency:	Refer to: p1155, r1170		
Note:	For OFF1/OFF3, the ramp-function generator ramp is effective.		
	The ramp-function generator is set (to the setpoint (r 1170)) and stops the drive corresponding to the ramp-down time (p 1121 or p 1135). While stopping via the ramp-function generator, STW1.4 is effective (enable ramp-function generator).		
r1169	CO: Speed controller speed setpoints 1 and $2 / n _c t r l ~ n _s e t ~ 1 / 2 ~$		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 3080
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint after the addition of the speed setpoint 1 (p 1155) and speed setpoint 2 (p 1160).		
Dependency:	Refer to: p1155, p1160		
Note:	The value is only correctly displayed at r0899.2 $=1$ (operation enabled).		
r1170	CO: Speed controller setpoint sum / n_ctrl setp sum		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1550, 1590, 1690, 1700, 1750, 3080, 5020, 6030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint after selecting the ramp-function generator and adding the speed setpoint 1 (p 1155) and speed setpoint 2 (p1160).		
Dependency:	Refer to: r1150, p1155, p1160		

1.2 List of parameters

r1197	Fixed speed setpoint number actual / n_set_fixed No act		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 3010
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of the selected fixed speed/velocity setpoint.		
Dependency:	Refer to: p1020, p1021, p1022, p1023		
Note:	If a fixed speed setpoint has not been selected ($\mathrm{p} 1020 \ldots \mathrm{p} 1023=0, \mathrm{r} 1197=0$), then r1024 $=0($ setpoint $=0$).		
r1198.0... 15	CO/BO: Control word setpoint channel / STW setpoint chan		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1530, 2505
	Min	Max	Factory setting
	-	-	-
Description:	Displays the control word for the setpoint channel.		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 Fixed setpoint bit 0	Yes	No 3010
	01 Fixed setpoint bit 1	Yes	No 3010
	02 Fixed setpoint bit 2	Yes	No 3010
	03 Fixed setpoint bit 3	Yes	No 3010
	05 Inhibit negative direction	Yes	No 3040
	06 Inhibit positive direction	Yes	No 3040
	11 Setpoint inversion	Yes	No 3040
	13 Motorized potentiometer raise	Yes	No 3020
	14 Motorized potentiometer lower	Yes	No 3020
	15 Bypass ramp-function generator	Yes	No 3060, 3070

[^0]

1.2 List of parameters

Note:	In U/f control mode, the parameter serves as a threshold value for establishing the current at the beginning of the flying restart function. When the threshold value is reached, the prevailing search current is set dependent upon the frequency on the basis of voltage inputs.
	Reducing the search current can also improve flying restart performance (if the system moment of inertia is not very high, for example).
p1203[0...n]	Flying restart search rate factor / FlyRst v_Srch Fact
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: U, T Scaling: - Dyn. index: DDS, p0180
	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	10 [\%] 4000 [\%] 100 [\%]
Description:	Sets the factor for the search speed for flying restart.
	The value influences the rate at which the output frequency is changed during a flying restart . A higher value results in a longer search time.
Recommend.:	For encoderless vector control and motor cables longer than 200 m , set the factor p1203 >= 300%.
Caution:	An unfavorable parameter value can result in the motor behaving in an uncontrollable fashion.
1	For vector control, a value that is too low or too high can cause flying restart to become unstable.
Note:	The parameter factory setting is selected so that standard induction motors that are rotating can be found and restarted as quickly as possible (fast flying restart).
	With this pre-setting, if the motor is not found (e.g. for motors that are accelerated as a result of active loads or with U/f control and low speeds), we recommend that the search rate is reduced (by increasing p1203).

r1204.0...13	CO/BO: Flying restart U/f control status / FlyRest Uf st		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-

Description: Displays the status for checking and monitoring flying restart states in the U/f control mode.

Bit field:	Bit	Signal name	1 signal	0 signal
	00	Current impressed	Yes	No
	01	No current flow	Yes	No
02	Voltage input	Yes	No	
	03	Voltage reduced	Yes	No
	04	Start ramp-function generator	Yes	No
	05	Wait for execution	Yes	No
	06	Slope filter act	Yes	No
	07	Positive gradient	Yes	No
	08	Current < thresh	Yes	No
	09	Current minimum	Yes	No
10	Search in the positive direction	Yes	No	
	11	Stop after positive direction	Yes	No
	12	Stop after negative direction	Yes	Yes

r1205.0... 15	CO/BO: Flying restart vector control status / FlyRest vector st		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting

Description: Displays the status for checking and monitoring flying restart states in the vector control mode.
Bit field:

Bit	Signal name	1 signal	0 signal	FP
00	Speed adaptation circuit record angle	Yes	No	-
01	Speed adaptation circuit set gain to 0	Yes	No	-
02	Isd channel enable	Yes	No	-

Note:	Re p1210 = 1:
	Faults that are present are automatically acknowledged. If new faults occur after a successful fault acknowledgment, then these are also automatically acknowledged again. p1211 has no influence on the number of acknowledgment attempts.
	Re p1210 = 4:
	An automatic restart is only performed if fault F30003 has occurred on the power unit. If additional faults are present, then these faults are also acknowledged and when successful, starting continues. If the 24 V Control Unit power supply fails, then this is interpreted as a line supply failure.
	Re p1210 = 6:
	An automatic restart is carried out if any fault has occurred.
	Re p1210 = 14:
	As for p1210 = 4. However, faults that are present must be manually acknowledged.
	Re p1210 = 16:
	As for p1210 = 6. However, faults that are present must be manually acknowledged.
	Re p1210 = 26:
	The same as for $\mathrm{p} 1210=6$. For this mode, the switch-on command can be entered with a delay. The restart is interrupted with either OFF2 or OFF3.
p1211	Automatic restart start attempts / AR start attempts
	Access level: 3 Calculated: - Data type: Unsigned16
	Can be changed: U, T Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	0103
Description:	Sets the start attempts of the automatic restart function for $\mathrm{p} 1210=4,6,14,16,26$.
Dependency:	Refer to: p1210, r1214
Caution:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Notice:	After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
	After a complete power failure the start counter always starts with the counter value that applied before the power failure, and decrements this start attempt by 1 . If a further attempt to acknowledge is started by the automatic restart function prior to power failure, e.g. when the CU remains active on power failure longer than the time p1212 / 2, the fault counter will already have been decremented once. In this case, the start counter is thus decreased by the value 2.
Note:	A start attempt starts immediately when a fault occurs. The start attempt is considered to been completed if the motor was magnetized $(r 0056.4=1)$ and an additional delay time of 1 s has expired.
	As long as a fault is present, an acknowledge command is generated in the time intervals of p1212 / 2. When successfully acknowledged, the start counter is decremented. If, after this, a fault re-occurs before a restart has been completed, then acknowledgement starts again from the beginning.
	Fault F07320 is output if, after several faults occur, the number of parameterized start attempts has been reached. After a successful start attempt, i.e. a fault/error has no longer occurred up to the end of the magnetizing phase, the start counter is again reset to the parameter value after 1 s . If a fault re-occurs - the parameterized number of start attempts is again available.
	At least one start attempt is always carried out.
	After a line supply failure, acknowledgement is immediate and when the line supply returns, the system is powered up. If, between successfully acknowledging the line fault and the line supply returning, another fault occurs, then its acknowledgement also causes the start counter to be decremented.
	For p1210 $=26$, the start counter is decremented if after a successful fault acknowledgement, the on command is present.

p1212

	Access level: 3
	Can be changed: U, T
	Units group: -
	Min
Description:	$0.1[\mathrm{~s}]$
	Sets the delay time up to restart.

Calculated: -	Data type: FloatingPoint32
Scaling: -	Dyn. index: -
Unit selection: -	Func. diagram: -
Max	Factory setting
$1000.0[\mathrm{~s}]$	$1.0[\mathrm{~s}]$

Dependency:	This parameter setting is active for $\mathrm{p} 1210=4,6,26$.
	For p1210 = 1, the following applies:
	Faults are only automatically acknowledged in half of the waiting time, no restart.
	Refer to: p1210, r1214
Notice:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Note:	The faults are automatically acknowledged after half of the delay time has expired and the full delay time.
	If the cause of a fault is not removed in the first half of the delay time, then it is no longer possible to acknowledge in the delay time.
p1213[0...1]	Automatic restart monitoring time / AR t_monit
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: U, T Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	$0.0[\mathrm{~s}] \quad 10000.0[\mathrm{~s}] \quad$ [0] $60.0[\mathrm{~s}]$
	[1] 0.0 [s]
Description:	Sets the monitoring time of the automatic restart (AR).
Index:	[0] = Restart
	[1] = Reset start counter
Dependency:	Refer to: p1210, r1214
Caution:	A change is only accepted and made in the state "initialization" (r1214.0) and "wait for alarm" (r1214.1).
Notice:	After fault F07320 occurs, the power-on command must be withdrawn and all of the faults acknowledged so that the automatic restart function is re-activated.
Note:	Re index 0 :
	The monitoring time starts when the faults are detected. If the automatic acknowledgements are not successful, the monitoring time runs again. If, after the monitoring time has expired, the drive has still not successfully started again (flying restart and magnetizing of the motor must have been completed: r0056.4 = 1), then fault F07320 is output.
	The monitoring is de-activated with $\mathrm{p} 1213=0$. If p 1213 is set lower than the sum of p 1212 , the magnetizing time p0346 and the additional delay time due to the flying restart, then fault F07320 is generated at each restart. If, for $\mathrm{p} 1210=1$, the time in p1213 is set lower than in p1212, then fault F07320 is also generated at each restart.
	The monitoring time must be extended if the faults that occur cannot be immediately and successfully acknowledged (e.g. for faults that are permanently present).
	In the case of $p 1210=14,16$, the faults which are present must be acknowledged manually within the time in p1213[0]. Otherwise, fault F07320 is generated after the set time.
	Re index 1:
	The start counter (refer to r 1214) is only set back to the starting value p1211 if, after successful restart, the time in $\mathrm{p} 1213[1]$ has expired. The delay time is not effective for fault acknowledgement without automatic restart (p1210 = 1). After a power failure (blackout) the delay time only starts after the line supply returns and the Control Unit boots. The start counter is set to p1211, if F07320 occurred, the power-on command is withdrawn and the fault is acknowledged.
	The start counter is immediately updated if the starting value p1211 or the mode p1210 is changed.
	For $\mathrm{p} 1210=26$, the fault must have been successfully acknowledged and the switch-on command issued within the time in p1213[0]. Otherwise, fault F07320 is generated after the set time.

r1214.0... 15	CO/BO: Automatic restart status / AR status					
	Access level: 4		Calculated: -		Data type: Unsigned16	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the status of the automatic restart (AR).					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
		Initialization		Yes		-
		Wait for alarm		Yes	No	-
		Auto restart act		Yes	No	-
		Setting the ackno	ommand	Yes	No	-
	04	Acknowledge ala		Yes	No	-

1.2 List of parameters

05	Restart	Yes	No
06	Delay time running after automatic power-	Yes	No
	up		
07	Fault	Yes	No
10	Effective fault	Yes	No
12	Start count. bit 0	ON	OFF
13	Start count. bit 1	ON	OFF
14	Start count. bit 2	ON	OFF
15	Start count. bit 3	ON	OFF

Note:
Re bit 00:
State to display the single initialization after POWER ON.
Re bit 01:
State in which the automatic restart function waits for faults (initial state).
Re bit 02:
General display that a fault has been identified and that the restart or acknowledgement has been initiated.
Re bit 03:
Displays the acknowledge command within the "acknowledge alarms" state (bit $4=1$). For bit $5=1$ or bit $6=1$, the acknowledge command is continually displayed.
Re bit 04:
State in which the faults that are present are acknowledged. The state is exited again after successful acknowledgement. A change is only made into the next state if it is signaled that a fault is no longer present after an acknowledgement command (bit $3=1$).
Re bit 05:
State in which the drive is automatically powered up (only for p1210 $=4,6$).
Re bit 06:
State in which the system waits after having been powered up, to the end of the start attempt (to the end of the magnetizing process).
For $\mathrm{p} 1210=1$, this signal is directly set after the faults have been successfully acknowledged.
Re bit 07:
State which is assumed after a fault occurs within the automatic restart function. This is only reset after acknowledging the fault and withdrawing the power-on command.
Re bit 10:
When the automatic restart function is active, r 1214.7 is displayed, otherwise the active fault r 2139.3 .
Re bits 12 ... 15:
Actual state of the start counter (binary coded).
Re bit 04 in addition:
For p1210 = 26, the system waits in this state until the switch-on command is available.

p1215	Motor holding brake configuration / Brake config		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2701, 2707, 2711
	Min	Max	Factory setting
	0	3	0
Description:	Sets the holding brake configuration.		
Value:	0: \quad No motor holding brake available		
	1: Motor holding brake acc. to sequence contro		
	2: Motor holding brake always open3: Motor holding brake like sequence control connection via BICO		
Dependency:	Refer to: p1216, p1217, p1226, p1227, p1228		
Caution:	For the setting p1215 = 0, if a brake is used, it remains closed. If the motor moves, this will destroy the brake.		
Notice:	If p 1215 was set to 1 or if p 1215 was set to 3 , then when the pulses are suppressed, the brake is closed even if the motor is still rotating. Pulse suppression can either be caused by a 0 signal at p0844, p0845 or p0852 or as a result of a fault with OFF2 response. If this is not desirable (e.g. for a flying restart), then the brake can be kept open using a 1 signal at p0855.		

Note:	If a holding brake integrated in the motor is used, then it is not permissible that p1215 is set to 3 . if an external motor holding brake is being used, then p1215 should be set to 3 and r0899.12 should be interconnected as control signal. The parameter can only be set to zero when the pulses are inhibited.		
p1216	Motor holding brake opening time / Brake t_open		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2701
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	100 [ms]
Description:	Sets the time to open the motor holding brake.		
	After the holding brake has been controlled (opened), the speed setpoint remains at zero for this time. After this, the speed setpoint is enabled.		
Recommend.:	This time should be set longer than the actual opening time of the brake. This ensures that the drive cannot accelerate when the brake is applied.		
Dependency:	Refer to: p1215, p1217		
Note:	For a motor with DRIVE-CLiQ and integrated brake, for $\mathrm{p} 0300=10000$, this time is pre-assigned the value saved in the motor.		
p1217	Motor holding brake closing time / Brake t_close		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2701
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	100 [ms]
Description:	Sets the time to apply the motor holding brake.		
	After OFF1 or OFF3 and the controlling (closing) of the holding brake, the drive remains stationary under closed-loop control for this time with a speed setpoint of zero. The pulses are suppressed when the time expires.		
Recommend.:	This time should be set longer than the actual closing time of the brake. This ensures that the pulses are only suppressed after the brake has closed.		
Dependency:	Refer to: p1215, p1216		
Notice:	If the selected closing time is too short with respect to the actual closing time of the brake, then the load can sag. If the closing time is selected to be too long with respect to the actual closing time of the brake, the control works against the brake and therefore reduces its lifetime.		
Note:	For a motor with DRIVE-CLiQ and integrated brake, for $\mathrm{p} 0300=10000$, this time is pre-assigned the value saved in the motor.		
p1226[0...n]	Threshold for zero speed detection / n_standst n_thresh		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 2701
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	20.00 [rpm]
Description:	Sets the speed threshold for the standstill identification.		
	Acts on the actual value and setpoint monitoring.		
	When braking with OFF1 or OFF3, when the threshold is undershot, standstill is identified.		
Dependency:	Refer to: p1227		
	If p1226 is set to values under approx. 1% of the rated motor speed, then the model switchover limits of the vector control must be increased in order to guarantee reliable shutdown (see p1755, p1750 bit 7).		

1.2 List of parameters

Note:	Standstill is identified in the following cases: - the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired. - the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired. The actual value sensing is subject to measuring noise. For this reason, standstill cannot be detected if the speed threshold is too low.
p1227	Zero speed detection monitoring time / n_standst t_monit
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: U, T Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: 2701
	Min Max Factory setting
	0.000 [s] 300.000 [s] 300.000 [s]
Description:	Sets the monitoring time for the standstill identification.
	When braking with OFF1 or OFF3, standstill is identified after this time has expired, after the setpoint speed has fallen below p1226 (also refer to p1145).
Dependency:	The parameter is pre-assigned depending on the size of the power unit.
	Refer to: p 1226
Notice:	For p1145 > 0.0 (RFG tracking) the setpoint is not equal to zero dependent on the selected value. This can therefore cause the monitoring time in p1227 to be exceeded. In this case, for a driven motor, the pulses are not suppressed.
Note:	Standstill is identified in the following cases:
	- the speed actual value falls below the speed threshold in p1226 and the time started after this in p1228 has expired. - the speed setpoint falls below the speed threshold in p1226 and the time started after this in p1227 has expired.
	For p1227 = 300.000 s , the following applies:
	Monitoring is de-activated.
	For p1227 $=0.000 \mathrm{~s}$, the following applies:
	With OFF1 or OFF3 and a ramp-down time $=0$, the pulses are immediately suppressed and the motor "coasts" down.
	Once the Control Unit has been booted up for the first time or if the factory settings have been defined accordingly, the parameter is defined in accordance with the power unit.

p1228	Pulse suppression delay time / Pulse suppr t_del		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2701
	Min	Max	Factory setting
	0.000 [s]	299.000 [s]	0.010 [s]
Description:	Sets the delay time for pulse suppression.		
	- the speed actual value falls below the threshold in p1226 and the time started after this in p1228 has expired. - the speed setpoint falls below the threshold in p1226 and the time started after this in p1227 has expired.		
Dependency:	Refer to: p1226, p1227		
Notice:	When the motor holding brake is activated, pulse cancellation is additionally delayed by the brake closing time (p1217).		

p1230[0...n]	BI: DC braking activation / DC brake act	
	Access level: 2	Calculated: -
	Can be changed: U, T	Scaling: -
	Units group: -	Unit selection: -
	Min	Max
	-	Fyn. index: CDS, p0170
		Factory setting
Description:	Sets the signal source to activate DC braking.	0
Dependency:	Refer to: p1231, p1232, p1233, p1234, r1239	
Note:	1 signal: DC braking activated.	
	0 signal: DC braking de-activated.	

p1233[0...n]	DC braking time / DCBRK time		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: 7017
	Min	Max	Factory setting
	0.0 [s]	3600.0 [s]	1.0 [s]
Description:	Sets the DC braking time (as fault response).		
Dependency:	Refer to: p1230, p1231, p1232, p1234, r1239		
p1234[0...n]	Speed at the start of DC braking / DCBRK n_start		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: 7017
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the starting speed for DC braking. If the actual speed falls below this threshold, then DC braking is activated.		
Dependency:	Refer to: p1230, p1231, p1232, p1233, r1239		

r1239.8... 13	CO/BO: DC braking status word / DCBRK ZSW					
	Access level: 2		Calculated: -		Data type:	
	Can be changed: -		Scaling: -		Dyn. index:	
	Units group: -		Unit selection: -		Func. diagram: -	
	Min				Factory setting	
			-		-	
Description:	Status word of the DC braking.					
Bit field:		Signal name		1 signal	0 signal	FP
		DC braking activ		Yes	No	7017
		DC braking re		Yes	No	7017
		DC braking se		Yes	No	-
		DC braking se	inhibited	Yes	No	-
		DC braking for		Yes	No	-
Dependency:	Refer to: p1231, p1232, p1233, p1234					
Note:	Re bit 12, 13:					
	Only effective for $\mathrm{p} 1231=14$.					

p1240[0...n] Vdc controller configuration (vector control)/Vdc_ctr config vec
Access level: 3 Calculated: - Data type: Integer16
Can be changed: U, T Scaling: - Dyn. index: DDS, p0180
Units group: - Unit selection: - Func. diagram: 6220
Min Max Factory setting
0 3 1
Description: Sets the controller configuration of the DC link voltage (Vdc controller) in the closed-loop control mode. For U/f
control: see p1280.
Value: $\quad 0: \quad$ Inhib Vdc ctrl
1: Enable Vdc_max controller
3: Enable Vdc_min controller and Vdc_max controller
Dependency: Refer to: p1245

Notice: \quad An excessively high value in p1245 can possibly negatively influence the normal operation of the drive.
Note: \quad p1240 $=1,3$:

When the DC link voltage limit specified for the power unit is reached the following applies:

- the Vdc_max controller limits the regenerative energy in order that the DC link voltage is kept below the maximum DC link voltage when braking.
- the ramp-down times are automatically increased. If overvoltage faults occur in spite of the Vdc_max controller being active, the ramp-down time in p1121 might need to be increased.
- set the input voltage p0210 as low as possible in line with the supply voltage (in so doing avoid A07401). p1240 = 3 :
When the switch-in threshold of the Vdc_min controller is reached (p1245), the following applies:
- the Vdc_min controller limits the energy taken from the DC link in order to keep the DC link voltage above the minimum DC link voltage when accelerating.
- the motor is braked in order to use its kinetic energy to buffer the DC link.
- the Vdc_min controller cannot be used when the line voltage is permanently below 380 V (if required, p1247 should be reduced).
If a braking resistor is connected to the DC link ($\mathrm{p} 0219>0$), then the Vdc_max control is automatically deactivated.

r1242	Vdc_max controller switch-in level / Vdc_max on_level		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_max controller.		
	If p1254 $=0$ (automatic sensing of the switch-in level = off), then the following applies:		
	$\mathrm{r} 1242=1.15$ * sqrt(2) * p0210 (supply voltage)		
	PM230: r 1242 is limited to Vdc_max - 50.0 V .		
	If p1254 $=1$ (automatic sensing of the switch-in level $=$ on), then the following applies:		
	$\mathrm{r} 1242=\mathrm{Vdc}$ _max - 50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
	r1242 = Vdc_max - 25.0 V (for 230 V power units)		
Note:	The Vdc_max controller is not switched back off until the DC-link voltage falls below the threshold 0.95 * p1242 and the controller output is zero.		
p1243[0...n]	Vdc_max controller dynamic factor / Vdc_max dyn_factor		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1243.		
p1245[0...n]	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	65 [\%]	150 [\%]	76 [\%]
Description:	Sets the switch-in level for the Vdc-min controller (kinetic buffering).		
	The value is obtained as follows:		
	r1246[V] = p1245[\%] * sqrt(2) * p0210		
Dependency:	Refer to: p0210		
Warning:	An excessively high value may adversely affect normal drive operation.		

1.2 List of parameters

r1246	Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_min controller (kinetic buffering).		
Note:	The Vdc_min controller is not switched back off until the DC-link voltage rises above the threshold 1.05 * p1246 and the controller output is zero.		
p1247[0...n]	Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	300 [\%]
Description:	Sets the dynamic factor for the Vdc_min controller (kinetic buffering).		
	100% means that p1250, p1251, and p1252 (gain, integral time, and rate time) are used corresponding to their basic settings and based on a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case p1250, p1251, p1252 are weighted with the dynamic factor p1247.		
p1249[0...n]	Vdc_max controller speed threshold / Vdc_max n_thresh		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	10.00 [rpm]
Description:	Sets the lower speed threshold for the Vdc_max controller.		
	When this speed threshold is undershot, the Vdc_max control is switched out and the speed is controlled using the ramp-function generator.		
Note:	For fast braking where the ramp-function generator tracking was active, it is possible to prevent the drive rotating in the opposite direction by increasing the speed threshold and setting a final rounding-off time in the ramp-function generator (p 1131). This is supported using a dynamic setting of the speed controller.		

p1250[0...n]	Vdc controller proportional gain / Vdc_ctrl Kp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	1.00
Description:	Sets the proportional gain for the DC-link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective proportional gain is obtained taking into account p1243 (Vdc_max controller dynamic factor) and the		
	DC link capacitance of the power unit.		

p1251[0...n]	Vdc controller integral time /Vdc_ctrl Tn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	$0[\mathrm{~ms}]$	0 [ms]	
Description:	Sets the integral time for the DC-link voltage controller (Vdc_min controller, Vdc_max controller).		
Dependency:	The effective integral time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		

Note:	$\mathrm{p} 1251=0$: The integral component is de-activated.		
p1252[0...n]	Vdc controller rate time / Vdc_ctrl t_rate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6220
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	0 [ms]
Description:	Sets the rate time constant for the DC-link voltage controller (Vdc_min controller, Vdc_max controller). The effective rate time is obtained taking into account p1243 (Vdc_max controller dynamic factor).		
Dependency:			
p1254	Vdc_max controller automatic ON level detection / Vdc_max SenseOnLev		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	1
Description:	Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller.		
Value:	0 : Automatic detection inhibited		
p1255[0...n]	Vdc_min controller time threshold / Vdc_min t_thresh		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	1800.000 [s]	0.000 [s]
Description:	Sets the time threshold If this value is exceeded Prerequisite: p1256 = 1	in controller (kinetic buffe out; the required response	ameterized.
Notice:	If a time threshold has been parameterized, the Vdc_max controller should also be activated ($\mathrm{p} 1240=3$) so that the drive does not shut down with overvoltage when Vdc_min control is exited (due to the time violation) and in the event of fault response OFF3. It is also possible to increase the OFF3 ramp-down time p1135.		
p1256[0...n]	Vdc_min controller response (kinetic buffering) / Vdc_min response		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Sets the response for the Vdc_min controller (kinetic buffering).		
Value:	0: Buffer Vdc until undervoltage, n<p1257 -> F07405		
p1257[0...n]	Vdc_min controller speed threshold / Vdc_min n_thresh		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	50.00 [rpm]
Description:	Sets the speed threshold for the Vdc-min controller (kinetic buffering).		

1.2 List of parameters

r1258	CO: Vdc controller output / Vdc_ctrl output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6220
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
Note:	The regenerative power limit p1531 is used for vector control to pre-control the Vdc_max controller. The lower the power limit is set, the lower the correction signals of the controller when the voltage limit is reached.		
p1280[0...n]	Vdc controller or Vdc monitoring configuration (U/f) / Vdc_ctr config U/f		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1690, 6320
	Min	Max	Factory setting
	0	1	1
Description:	Sets the configuration of the controller for the DC link voltage (Vdc controller) in the U/f operating mode.		
Value:	0: Inhib Vdc ctrl 1: Enable Vdc_max controller		
Note:	For high input voltages (see p0210), the following settings can improve the degree of ruggedness of the Vdc_max controller:		
	- Set the input voltage p0210 as low as possible (in so doing avoid A07401).		
	- Set the rounding times (p1130, p1136).		
	- Increase the ramp-down times (p1121).		
	- Reduce the integral time of the controller (p1291) (factor 0.5).		
	- Reduce the rate time of the controller (p1292) (factor 0.5).		
	In this case, we generally recommend to use vector control (p1300 = 20) (Vdc controller, see p1240).		
r1282	Vdc_max controller switch-in level (U/f) / Vdc_max on_level		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	Displays the switch-in level for the Vdc_max controller.		
	If p1294 $=0$ (automatic sensing of the switch-in level = off), then the following applies:		
	r1282 $=1.15$ * sqrt(2) * p0210 (supply voltage)		
	If p1294 $=1$ (automatic sensing of the switch-in level = on), then the following applies:		
	r1282 = Vdc_max - 50.0 V (Vdc_max: Overvoltage threshold of the power unit)		
	r1282 = Vdc_max -25.0 V (for 230 V power units)		
Note:	The Vdc_max controller is not switched back off until the DC-link voltage falls below the threshold 0.95 * p1282 and the controller output is zero.		

p1283[0...n]	Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	1 [\%]	10000 [\%]	100 [\%]
Description:	Sets the dynamic factor for the DC link voltage controller (Vdc_max controller).		
	100% means that p1290, p1291, and p1292 (gain, integral time, and rate time) are used in accordance with their basic settings and on the basis of a theoretical controller optimization.		
	If subsequent optimization is required, this can be carried out using the dynamic factor. In this case, p1290, p1291, and p 1292 are weighted with the dynamic factor p 1283 .		
p1284[0...n]	Vdc_max controller time threshold (U/f) / Vdc_max t_thresh		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000 [s]	300.000 [s]	4.000 [s]
Description:	Sets the monitoring time of the Vdc_max controller. If the down ramp of the speed setpoint is permanently held longer than the set time, the system is shut down with fault message F7404.		
p1288[0...n]	Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) / Vdc_max factor RFG		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.000	100.000	0.500
Description:	Sets the feedback factor for the ramp-function generator. Its ramp times are decelerated relative to the output signal of the Vdc_max controller.		
Note:	For values p1288 $=0.0$ to 0.5 , the controller dynamics are automatically adapted internally.		
p1290[0...n]	Vdc controller proportional gain (U/f) / Vdc_ctrl Kp		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	0.00	100.00	1.00
Description:	Sets the proportional gain for the Vdc controller (DC link voltage controller).		
Note:	The gain factor is proportional to the capacitance of the DC link.		
	The parameter is pre-set to a value that is optimally adapted to the capacitance of the power unit.		
p1291[0...n]	Vdc controller integral time (U/f) / Vdc_ctrl Tn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	40 [ms]
Description:	Sets the integral time for the Vdc controller (DC link voltage controller).		

p1292[0...n]	Vdc controller rate time (U/f) / Vdc_ctrl t_rate		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6320
	Min	Max	Factory setting
	0 [ms]	1000 [ms]	10 [ms]
Description:	Sets the rate time constant for the Vdc controller (DC link voltage controller).		
p1294	Vdc_max controller automatic detection ON signal level (U/f) / Vdc_max SenseOnLev		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Activates/de-activates the automatic sensing of the switch-in level for the Vdc_max controller. When the sensing function is de-activated, the activation threshold r1282 for the Vdc_max controller is determined from the parameterized connection voltage p0210.		
Value:	0 : Automatic detectio 1: Automatic detectio		
r1298	CO: Vdc controller output (U/f) / Vdc_ctrl output		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index:-
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6320
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual output of the Vdc controller (DC link voltage controller)		
p1300[0...n]	Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(1), \mathrm{T}$	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1690, 6300
	Min	Max	Factory setting
	0	22	0
Description: Value:	Sets the open and closed-loop control mode of a drive.		
	0 : U/f control with line	ristic	
	1: U/f control with line	ristic and FCC	
	2: U/f control with par	acteristic	
	3: U/f control with para	le characteristic	
	4: U/f control with line	eristic and ECO	
	5: U/f control for drive	a precise freq. (e.g. textiles)	
	6: U/f control for drive	a precise frequency and FCC	
	7: U/f control for a par	aracteristic and ECO	
	19: U/f control with inde	voltage setpoint	
	20: Speed control (enc		
Dependency:	Only operation with U/f characteristic is possible if the rated motor speed is not entered (p 0311).		
	Operation with a U/f characteristic is not supported for 1LE4 synchronous motors.		
Notice:	Active slip compensation is required in the U/f control types with Eco mode (p1300 $=4$, 7). The scaling of the slip compensation (p1335) should be set so that the slip is completely compensated (generally 100\%).		
	The Eco mode is only effective in steady-state operation and when the ramp-function generator is not bypassed. In the case of analog setpoints, if required the tolerance for ramp-up and ramp-down should be actively increased for the ramp-function generator using p1148 in order to reliably signal a steady-state condition.		

```
Note: Only by selecting closed-loop speed control (p1300=20) is it possible to change over in operation to closed-loop
torque control (p1501). At the changeover, the setting of p1300 does not change. In this case, the actual state is displayed in r1407, bit 2 and bit 3.
For the open-loop control modes p1300 \(=5\) and 6 (textile sector), slip compensation p1335, resonance damping p1338, and the Imax frequency controller are switched off internally so that the output frequency can be set precisely. The Imax voltage controller remains active.
During operation (the pulses enabled) the open-loop/closed-loop control mode cannot be changed by changing over drive data sets.
```


Note:
Re bit 03:
When the bit is set, when the drive stops, the starting frequency of the motor holding brake is also not fallen below when the actual slip frequency is less than the starting frequency.

p1310[0...n]	Voltage boost permanent / U_boost perm		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1690, 6300
	Min	Max	Factory setting
	0.0 [\%]	250.0 [\%]	50.0 [\%]
Description:	Defines the voltage boost as a [\%] referred to the rated motor current (p0305).		
	The magnitude of the permanent voltage boost is reduced with increasing frequency so that at the rated motor frequency, the rated motor voltage is present.		
	The magnitude of the boost in Volt at a frequency of zero is defined as follows:		
	Voltage boost [V] $=1.732 \times \mathrm{p} 0305$ (rated motor current [A]) x r0395 (stator/primary section resistance [ohm]) $\times \mathrm{p} 1310$ (permanent voltage boost [\%]) / 100 \%		
	At low output frequencies, there is only a low output voltage in order to maintain the motor flux. However, the output voltage can be too low in order to achieve the following:		
	- magnetize the induction motor.		
	- hold the load.		
	- compensate for losses in the system.		
	This is the reason that the output voltage can be increased using p1310.		
	The voltage boost can be used for both linear as well as square-law U/f characteristics.		
Dependency:	The current limit p0640 limits the boost.		
	For vector control, the permanent voltage boost (p1310) has no effect as the drive converter automatically sets the optimum operating conditions.		
	Refer to: p1300, p1311, p1312, r1315		
Notice:	The voltage boost increases the motor temperature (particularly at zero speed).		
Note:	The voltage boost is only effective for U/f control (p1300).		
	The boost values are combined with one another if the permanent voltage boost (p 1310) is used in conjunction with other boost parameters (acceleration boost (p1311), voltage boost for starting (p1312)).		
	However, these parameters are assigned the following priorities: p1310 > p1311, p1312		

r1315	Voltage boost total / U_boost total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6300
	Min	$-[\mathrm{Vrms}]$	Factory setting
	$-[\mathrm{Vrms}]$	$-[\mathrm{Vrms}]$	
Description:	Displays the total resulting voltage boost in volt.		
	$r 1315=\mathrm{p} 1310+\mathrm{p} 1311+\mathrm{p} 1312$		
Dependency:	Refer to: $\mathrm{p} 1310, \mathrm{p} 1311, \mathrm{p} 1312$		

p1320[0...n]	U/f control programmable characteristic frequency $1 /$ Uf char f1		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	$0.00[\mathrm{~Hz}]$	$3000.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$.		
	This parameter specifies the voltage of the first point along the characteristic.		

p1322[0...n]	U/f control programmable characteristic frequency 2 / Uf char f2		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	0.00 [Hz]	$3000.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		
Dependency:	The following applies to the frequency values: $\mathrm{p} 1320<=\mathrm{p} 1322<=\mathrm{p} 1324<=\mathrm{p} 1326$. Otherwise, a standard characteristic is used that contains the rated motor operating point.		

p1323[0...n]	U/f control programmable characteristic voltage 2 / Uf char U2		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	0.0 [Vrms]	10000.0 [Vrms]	0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the second point along the characteristic.		
Dependency:	Refer to: p1310, p1311, p1320, p1321, p1322, p1324, p1325, p1326, p1327		

p1324[0...n]	U/f control programmable characteristic frequency 3 / Uf char f3		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	$0.00[\mathrm{~Hz}]$	$3000.00[\mathrm{~Hz}]$	$0.00[\mathrm{~Hz}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the third point along the characteristic.		
Dependency:	The following applies to characteristic is used that Refer to: p1310, p1311,	values: p1320 <= p132 e rated motor operating 1, p1322, p1323, p1325,	$=$ p1326. Otherwise, a standard

p1325[0...n]	U/f control programmable characteristic voltage 3/Uf char U3		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	$0.0[V \mathrm{Vms}]$	$10000.0[\mathrm{Vrms}]$	$0.0[\mathrm{Vrms}]$
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$.		
	This parameter specifies the voltage of the third point along the characteristic.		
Dependency:	Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1324, p1326, p1327		

p1326[0...n]	U/f control programmable characteristic frequency 4 / Uf char f4		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	0.00 [Hz]	10000.00 [Hz]	0.00 [Hz]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the frequency of the fourth point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$.		
	The following applies for the frequency values:		
	p 1320 <= p1322 <= p1324 <= p1326		
	Otherwise, a standard characteristic is used that contains the rated motor operating point.		
	Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1324, p1325, p1327		
Note:	Linear interpolation is carried out between the points $0 \mathrm{~Hz} / \mathrm{p} 1310, \mathrm{p} 1320 / \mathrm{p} 1321 \ldots \mathrm{p} 1326 / \mathrm{p} 1327$. For output frequencies above p1326, the characteristic is extrapolated with the gradient between the characteristic points p1324/p1325 and p1326/p1327.		
	The voltage boost when accelerating (p 1311) is also applied to the freely programmable U/f characteristic.		

p1327[0...n]	U/f control programmable characteristic voltage 4 / Uf char U4		
	Access level: 3	Calculated: p0340 $=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	0.0 [Vrms]	10000.0 [Vrms]	0.0 [Vrms]
Description:	The programmable characteristic for the U/f control is defined using 4 points and $0 \mathrm{~Hz} / \mathrm{p} 1310$. This parameter specifies the voltage of the fourth point along the characteristic.		
Dependency:	Selects the freely programmable characteristic using p1300 $=3$.		
	Refer to: p1310, p1311, p1320, p1321, p1322, p1323, p1324, p1325, p1326		
Note:	Linear interpolation is carried out between the points 0 Hz/p1310, p1320/p1321 ... p1326/p1327.		
	The voltage boost when accelerating (p 1311) is also applied to the freely programmable U/f characteristic.		

p1330[0...n]	CI: U/f control independent voltage setpoint / Uf U_set independ.		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2001	Dyn. index: CDS, p0170
	Units group: -	Unit selection:	Func. diagram: 6300
	Min	Max	Factory setting

r1337	CO: Actual slip compensation / Slip comp act val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the actual compensated slip [\%] referred to r0330 (rated motor slip).		
Dependency:			
	Refer to: p1335		
p1338[0...n]	U/f mode resonance damping gain / Uf Res_damp gain		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1690, 6310
	Min	Max	Factory setting
	0.00	100.00	0.00
Description:	Sets the gain for resonance damping for U/f control.		
Dependency:	Refer to: p1300, p1339, p1349		
Note:	The resonance damping function dampens active current oscillations that frequency occur under no-load conditions.		
	The resonance damping is active in a range from approximately 6% of the rated motor frequency (p 0310). The shutoff frequency is determined by p1349.		
	For the open-loop control modes p1300 $=5$ and 6 (textile sectors), the resonance damping is internally disabled in order that the output frequency can be precisely set.		
p1339[0...n]	U/f mode resonance damping filter time constant / Uf Res_damp T		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	1.00 [ms]	1000.00 [ms]	20.00 [ms]
Description:	Sets the filter time constant for resonance damping for U/f control.		
Dependency:	Refer to: p1300, p1338, p1349		
p1340[0...n]	I_max frequency controller proportional gain / I_max_ctrl Kp		
	Access level: 3	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1690
	Min	Max	Factory setting
	0.000	0.500	0.000
Description:	Sets the proportional gain of the I_max frequency controller. The I_max controller reduces the drive converter output current if the maximum current (r0067) is exceeded. In the U/f operating modes (p1300) for the I_max control, one controller is used that acts on the output frequency and one controller that acts on the output voltage. The frequency controller reduces the current by decreasing the converter output frequency. The frequency is reduced down to a minimum value (equaling twice rated slip). If the overcurrent condition cannot be successfully resolved using this measure, then the drive converter output voltage is reduced using the I_max voltage controller. Once the overcurrent condition has been resolved, the drive is accelerated along the ramp set in p1120 (ramp-up time).		
Dependency:	In the U/f modes (p 1300) for textile applications and for external voltage setpoints, only the I_max voltage controller is used.		
Notice:	When de-activating the I_max controller, the following must be carefully observed:		
	When the maximum current (r0067) is exceeded, the output current is no longer reduced, however, overcurrent alarm messages are generated. The drive is shut down if the overcurrent limit (r0209) is exceeded.		

Note:	The I_max limiting controller becomes ineffective if the ramp-function generator is de-activated with p1122 = 1 . p1341 = 0: I_max frequency controller de-activated and I_max voltage controller activated over the complete speed range.		
p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1690
	Min	Max	Factory setting
	0.000 [s]	50.000 [s]	0.300 [s]
Description:	Sets the integral time for the I_max frequency controller.		
Dependency:	Refer to: p1340		
Note:	When p1341 = 0 , the current limiting controller influencing the frequency is de-activated and only the current limiting controller influencing the output voltage remains active ($\mathrm{p} 1345, \mathrm{p} 1346$).		
	In the case of power units with regenerative feedback (PM250, PM260), current limitation control for a regenerative load is always implemented by influencing the frequency. This current limiting function is de-activated with p1340 $=$ p1341 $=0$.		
r1343	CO: I_max controller frequency output / I_max_ctrl f_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1690
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the effective frequency limit.		
Dependency:	Refer to: p1340		
r1344	I_max controller voltage output / I_max_ctrl U_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 1690
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the amount by which the converter output voltage is reduced.		
Dependency:	Refer to: p1340		
p1345[0...n]	I_max voltage controller proportional gain / I_max_U_ctrl Kp		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1690
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain for the I_max voltage controller.		
Dependency:	Refer to: p1340		
Note:	The controller settings are also used in the current controller of the DC braking (refer to p1232).		
p1346[0...n]	I_max voltage controller integral time / I_max_U_ctrl Tn		
	Access level: 3	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1690
	Min	Max	Factory setting
	0.000 [s]	50.000 [s]	0.030 [s]
Description:	Sets the integral time for the I_max voltage controller. Refer to: p1340		
Dependency:			

1.2 List of parameters

Note:	The controller settings are also used in the current controller of the DC braking (refer to p1232).
For p1346 = 0, the following applies:	
The integral time of the I_max voltage controller is de-activated.	

r1348	CO: U/f control Eco factor actual value / U/f Eco fac act v		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6300
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	
Description:	Displays the economic factor determined for optimizing motor consumption.		
Dependency:	Refer to: p1335		
Note:	The value is only determined for operating modes with Economic $(p 1300=4,7)$.		

p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6310
	Min	Max	Factory setting
	0.00 [Hz]	3000.00 [Hz]	0.00 [Hz]
Description:	Sets the maximum output frequency for resonance damping for U/f control. Resonance damping is inactive above this output frequency.		
Dependency:	Refer to: p1338, p1339		
Note:	For p1349 = 0, the changeover limit is automatically set to 95% of the rated motor frequency - however, to a max. of 45 Hz .		

p1350[0...n]	Soft starting / Soft starting		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Min selection: -	Func. diagram: 1690
	0	1	Factory setting
Description:	Sets whether the voltage is continuously increased during the magnetizing phase (p1350 = 1, On) or whether it jumps directly to the voltage boost (p1350 = 0, Off).		

Value:	$0:$	OFF
	$1:$	ON

Note:		The settings for this parameter have the following advantages and disadvantages:
		0 = off (jump directly to voltage boost)
		Advantage: Flux is established quickly -> torque is quickly available
		Disadvantage: The motor can move while it is being magnetized
		1 = on (voltage is continually established)
		Advantage: The motor is unlikely to rotate
		Disadvantage: The flux is established slower -> torque is available later

p1351[0...n] CO: Motor holding brake starting frequency / Brake f_start
Access level: $3 \quad$ Calculated: - Data type: FloatingPoint32

Can be changed: U, T
Units group: -
Min
-300.00 [\%]

Dyn. index: DDS, p0180
Func. diagram: 6310
Factory setting
0.00 [\%]

Description: Sets the frequency setting value at the slip compensation output for starting up with motor holding brake.
Dependency:
When setting p1351>0, then slip compensation is automatically activated (p1335 = 100%).
Refer to: p1302, p1352
Notice: \quad A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.

Note:	Connected with p1352 a value of 100\% corresponds to the motor rated slip (r0330).
p1352[0...n]	CI: Motor holding brake starting frequency signal source / Brake f_start
	Access level: 3 Calculated: - Data type: U32 / FloatingPoint32
	Can be changed: T Scaling: PERCENT Dyn. index: CDS, p0170
	Units group: - Unit selection: - Func. diagram: 6310
	Min Max Factory setting
	1351[0]
Description:	Sets the signal source for the frequency setting value at the slip compensation output for starting up with motor holding brake.
Dependency:	Refer to: p1216
Note:	A value of 100\% corresponds to the motor rated slip (r0330).
	The setting of the starting frequency begins after magnetizing (see p0346, r0056.4) and ends once the brake opening time (p 1216) has elapsed and the starting frequency (p 1334) has been reached. A setting value of zero means that no setting procedure will take place.

p1400[0...n]	Speed control configuration / n_ctrl config					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: U, T		Scaling: -		Dyn. index: DDS, p0180	
	Units group: -		Unit selection: -		Func. diagram: 6490	
	Min		Max		Factory setting	
	-		-		1000000000100001 bin	
Description:	Sets the configuration for the closed-loop speed control.					
Bit field:	Bit	Signal name			0 signal	FP
		Automatic Kp/Tn		Yes	No	6040
		Sensorless vector	I comp	Yes	No	6040
	05	$\mathrm{Kp} / \mathrm{Tn}$ adaptation		Yes	No	6040
	06	Free Tn adaptatio		Yes	No	6050
	14	Torque pre-contro			For n_ctrl enab	6060
	15	Sensorless vector	pre-con	Yes	No	6030

Note:
Re bit 01:
When the bit is set, the I component of the speed controller is kept when changing into the open-loop controlled mode.

Note:
Re bit 00 (not for permanent-magnet synchronous motors):
Initially, the flux is only established with a low rate of rise when magnetizing the induction motor. The flux setpoint p1570 is reached again at the end of the magnetizing time p0346.
Re bit 01 (not for permanent-magnet synchronous motors):
Initially, the flux is only established with a low rate of rise when magnetizing the induction motor. The flux setpoint p 1570 is reached again at the end of the magnetizing time p0346. When quick magnetizing ($\mathrm{p} 1401.6=1$) is selected, soft starting is internally de-activated and alarm A07416 is displayed.

1.2 List of parameters

The flux differentiation can be switched out if a significant ripple occurs in the field-generating current setpoint (r0075) when entering the field weakening range. However, this is not suitable for fast acceleration operations because then, the flux decays more slowly and the voltage limiting responds.
Re bit 02 (not for permanent-magnet synchronous motors):
The flux build-up control operates during the magnetizing phase p0346 of the induction motor. If it is switched out, a constant current setpoint is injected and the flux is built up corresponding to the rotor time constant. When quick magnetizing ($\mathrm{p} 1401.6=1$) is selected and when flux build-up control is de-energized alarm A07416 is displayed. Re bit 06 (not for induction motors):
Magnetizing is performed with maximum current (0.9 * r0067). With active identification of the stator resistance (see p0621) quick magnetizing is internally de-activated and alarm A07416 is displayed. During a flying restart of a rotating motor (see p1200) no quick magnetizing takes place.
Re bit 07:
if the speed of the drive exceeds the effective speed limit of the speed limiting controller, the torque limit is reduced linearly to zero as the deviation becomes greater. This reduces the integral component of the speed controller and, in turn, the overshoot during load shedding (see also F07901 and p2162).

p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config		
	Access level: 4	Calculated: p0340 = 1,3	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0000 bin
Description:	Sets the configuration for the closed-loop control and the motor model.		
Bit field:	Bit Signal name	1 signal	0 signal
	02	Current controller adaptation active	Yes

r1406.4... 15	CO/BO: Control word speed controller / STW n_ctrl				
		ess level: 3	Calculated: -	Data type: Unsigned16	
		be changed: - S	Scaling: -	Dyn. index: -	
		group: - U	Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-	-	-	-	
Description:	Displays the control word of the speed controller.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Hold speed controller I component	nt Yes	No	6040
	05	Set speed controller I component	Yes	No	6040
	11	Droop enable	Yes	No	6030
	12	Torque control active	Yes	No	6060
	15	Set speed adaptation controller I component	Yes	No	-

r1407.0... 17	CO/BO: Status word speed controller / ZSW n_ctrl					
	Access level: 3		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: 1530, 2522	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the status word of the speed controller.					
Bit field:	Bit	Signal name		1 signal	0 signal	FP
	00	U/f control active		Yes	No	-
	01	Encoderless operation active		Yes	No	-
	02	Torque control active		Yes	No	6030,
						$\begin{aligned} & 6060 \\ & 8010 \end{aligned}$
	03	Speed control active		Yes	No	6040
	05	Speed controller I component	ozen	Yes	No	6040
	06	Speed controller I component		Yes	No	6040

1.2 List of parameters

r1439	Speed setpoint I component / n_set I_comp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 5030, 5040, 6031
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the speed setpoint for the I component of the speed controller (output of the reference model after the setpoint limiting).		
Dependency:	Refer to: r1438		
Note:	In the standard state (the reference model is de-activated), r1438 $=$ r1439 .		
r1444	Speed controller speed setpoint steady-state (static) / n_ctrl n_set stat		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 5030
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the sum of all speed setpoints that are present.		
	The following sources are available for the displayed setpoint:		
	- setpoint at the ramp-function generator input (r1119).		
	- speed setpoint 1 (p1155).		
	- speed setpoint 2 (p1160).		
	- speed setpoint for the speed pre-control (p1430).		
	- setpoint from DSC (for DSC active).		
	- setpoint via PC (for master control active).		
Dependency:	Refer to: r1119, p1155, p1160		
r1445	CO: Actual speed smoothed / n_act smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6040
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the actual smoothed actual speed for speed control.		
p1452[0...n]	Speed controller speed actual value smoothing time (SLVC) / n_C n_act T_s SLVC		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1700, 6040
	Min	Max	Factory setting
	0.00 [ms]	32000.00 [ms]	10.00 [ms]
Description:	Sets the smoothing time for the actual speed of the speed controller for encoderless closed-loop speed control.		
Note:	The smoothing must be increased if there is gear backlash. For longer smoothing times, the integral time of the speed controller must also be increased (e.g. using p0340 $=4$).		
r1454	CO: Speed controller system deviation I component / n_ctrl sys dev Tn		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6040
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the system deviation of the I component of the speed controller.		

p1455[0...n]	CI: Speed controller P gain adaptation signal / n_ctr adapt_sig Kp		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6050
	Min	Max	Factory setting
	-	-	0
Description:	Sets the source for the adaptation signal to additionally adapt the P gain of the speed controller.		
Dependency:	Refer to: p1456, p1457, p1458, p1459		
p1456[0...n]	Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6050
	Min	Max	Factory setting
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the lower starting point of the adaptation range for the additional adaptation of the P gain of the speed controller. The values are in \% and refer to the set source of the adaptation signal.		
Dependency:	Refer to: p1455, p1457, p1458, p1459		
Note:	If the upper transition point p1457 of the speed controller adaptation is set to lower values than the lower transition p1456, then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		

p1457[0...n]	Speed controller P gain adaptation upper starting point / n_ctrl AdaptKp up		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6050
	Min	Max	Factory setting
	0.00 [\%]	400.00 [\%]	0.00 [\%]
Description:	Sets the upper starting point of the adaptation range for the additional adaptation of the P gain of the speed controller.		
	The values are in \% and refer to the set source of the adaptation signal.		
Dependency:	Refer to: p1455, p1456, p1458, p1459		
Note:	If the upper transition point $p 1457$ of the speed controller adaptation is set to lower values than the lower transition p1456, then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		

p1458[0...n]	Adaptation factor lower / Adapt_factor lower		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6050
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the adaptation factor before the adaptation range ($0 \% \ldots \mathrm{p} 1456$) to additionally adapt the P gain of the speed/velocity controller.		
Dependency:	Refer to: p1455, p1456, p1457, p1459		
Note:	If the upper transition point p1457 of the speed controller adaptation is set to lower values than the lower transition p 1456 , then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		

p1459[0...n]	Adaptation factor upper / Adapt_factor upper		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6050
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the adaptation factor after the adaptation range (> p1457) to additionally adapt the P gain of the speed/velocity controller.		
Dependency:	Refer to: p1455, p1456, p1457, p1458		
Note:	If the upper transition point p 1457 of the speed controller adaptation is set to lower values than the lower transition p1456, then the controller gain below p1457 is adapted with p1459 and above p1456, with p1458.		
p1461[0...n]	Speed controller Kp adaptation speed upper scaling / n_ctr Kp n up scal		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6050
	Min	Max	Factory setting
	0.0 [\%]	200000.0 [\%]	100.0 [\%]
Description:	Sets the P gain of the speed controller for the upper adaptation speed range (>p1465).		
	The entry is made referred to the P gain for the lower adaptation speed range of the speed controller (\% referred to p1470).		
Dependency:	Refer to: p1464, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition p1464, then the controller gain below p1465 is adapted with p1461. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1463[0...n]	Speed controller Tn adaptation speed upper scaling /n_ctr Tn \mathbf{n} up scal		
	Access level: 3	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180

p1464[0...n]	Speed controller adaptation speed lower / n_ctrl n lower		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6050
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	0.00 [rpm]
Description:	Sets the lower adaptation speed of the speed controller. No adaptation is effective below this speed.		
Dependency:	Refer to: p1461, p1463, p1465		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1465[0...n]	Speed controller adaptation speed upper / n_ctrl \mathbf{n} upper		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6050
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the upper adaptation speed of the speed controller.		
	No adaptation is effective above this speed.		
	For P gain, p1470 \times p1461 is effective. For the integral time, p1472 \times p1463 is effective.		
Dependency:	Refer to: p1461, p1463, p1464		
Note:	If the upper transition point p1465 of the speed controller adaptation is set to lower values than the lower transition point p1464, then the controller below p1465 is adapted with p1461 or p1463. This means that an adaptation can be implemented for low speeds without having to change the controller parameters.		

p1466[0...n] Cl: Speed controller P-gain scaling/n_ctrl Kp scal
Access level: 4 Calculated: - Data type: U32 / FloatingPoint32
Can be changed: T Scaling: PERCENT Dyn. index: CDS, p0170
Units group: - Unit selection: - Func. diagram: 6050
Min Max Factory setting
Description: Sets the signal source for the scaling of the P gain of the speed controller.
This also makes the effective P gain (including adaptations) scalable.

r1468	CO: Speed controller P-gain effective $/ \mathbf{n}$ _ctr Kp eff		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6040
	Min	-	Factory setting
	-	-	
Description:	Displays the effective P gain of the speed controller.		

r1469	Speed controller integral time effective /n_ctr Tn eff		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: $5040,5042,6040$
	Min	Max	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$
Description:	Displays the effective integral time of the speed controller.		

p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SLVC Kp		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6040, 6050
	Min	Max	Factory setting
	0.000	999999.000	0.300
Description:	Sets the P gain for encoderless operation for the speed controller.		
Note:	The product p0341 x 00342 is taken into account when automatically calculating the speed controller ($\mathrm{p} 0340=1,3$, 4).		

1.2 List of parameters

p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SLVC Tn		
	Access level: 2	Calculated: p0340 $=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6040, 6050
	Min	Max	Factory setting
	0.0 [ms]	100000.0 [ms]	20.0 [ms]
Description:	Set the integral time for encoderless operation for the speed controller.		
Note:	The integral component is stopped if the complete controller output or the sum of controller output and torque precontrol reach the torque limit.		
p1475[0...n]	CI: Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6040
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the torque setting value when starting up with motor holding brake.		
Recommend.:	To hold the actual torque when stopping the motor, you are advised to set p1400 bit $1=1$. As a result, the integral component of the speed controller is frozen when changing to the open-loop controlled operating range.		
Dependency:	The switching in of the torque setting value for the motor holding brake has a higher priority than the setting of the integrator value using p1477 and p1478.		
Note:	The setting of the integral output of the speed controller begins after magnetizing (see p0346, r0056 bit 4) and ends at the end of the brake control opening time p1216. A setting value of zero means that no setting procedure will take place. If p1351 is used as a signal source for the torque setting value, the percentage value is interpreted in relation to the rated torque (p2003).		
p1476[0...n]	BI: Speed controller hold integrator / n_ctrl integ stop		
	Access level: 4	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2520, 5040, 5042, 5210, 6040
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to hold the integrator for the speed controller.		
p1477[0...n]	BI: Speed controller set integrator value / n_ctrl integ set		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2520, 5040, 5042, 5210, 6040
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to set the integrator setting value (p1478).		
Dependency:	Refer to: p1478, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p1478[0...n]	CI: Speed controller integrator setting value / n_ctr integ_setVal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6040
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the integrator setting value for the velocity controller. The signal to set this integrator setting value is interconnected via p 1477.		
Dependency:	The setting value of the speed controller integrator is weighted with the scaling factor of the signal source in p147		
	If p 1478 is interconne (r0346) and if the spe the pulse inhibit. This were inhibited, a setti inhibited. For sensorl integral component of	ral output of the speed con enabled, the integral com setting command (p1477) available, which is not de ol, in addition p1400.1 sh roller is not controlled do	82), then after the magnetizing time controller is set to the last value befo nected or, at the instant that the puls to the next time that the pulses are 1 so that when the drive is stopped,
	In order that when setting the integrator output, only the static torque is detected, we recommend that the accelerating torque is completely pre-controlled (e.g. p1496).		
	If p1478 is interconnected to another output other than r1482, then after magnetizing and speed controller enable, the integral output is set once if the setting command is not interconnected (p1477 = 0).		
	Refer to: p1477, p1479		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1479[0...n]	CI: Speed controller integrator setting value scaling / n_ctrl I_val scal		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6040
	Min	Max	Factory setting
		-	1
Description:	Sets the signal source for scaling the integrator setting value (p1478) of the speed controller.		
Dependency:	Refer to: p1477, p1478		
r1482	CO: Speed controller I torque output / n_ctrl I-M_outp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 5040, 5042, 5210, 6030, 6040
	Min	Max	Factory setting
	- [Nm]	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$
Description:	Display and connector output for the torque setpoint at the output of the I speed controller.		
p1486[0...n]	CI: Droop compensation torque / Droop M_comp		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6030
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the compensation torque to be output within the droop calculation.		
	This parameter should be interconnected with the torque setpoint of the drive (corresponding to the selection p1488), with which load equalization should be performed.		

p1487[0...n]	Droop compensation torque scaling / Droop M_comp scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6030
	Min	Max	Factory setting
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the compensation torque within the droop calculation.		
p1488[0...n]	Droop input source / Droop input source		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6030
	Min	Max	Factory setting
	0	3	0
Description:	Sets the source for droop feedback.		
	With increasing torque, the speed setpoint is reduced (enabled using p1492), so that for mechanically coupled drives a load equalization (load compensation) is obtained.		
	A load difference compensation is also possible, if p1486 is interconnected with the torque setpoint of the other drive.		
Value:	0: Droop feedback 1: Droop from torqu 2: Droop from spee 3: Droop from integ	utput eed controller	
Dependency:	Refer to: p1486, p1487,	, p1492	
Caution:	For active acceleration 1, as this could result in of the speed controller s	he speed controller (re ling effects. Instead of d, which generally sets	is not recommended that p1488 is set to of the droop feedback, the output signal
p1489[0...n]	Droop feedback scaling / Droop scaling		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6030
	Min	Max	Factory setting
	0.000	0.500	0.050
Description:	Sets the scaling for the droop feedback		
Dependency:	Refer to: p1486, p1487, p1488, r1490, p1492		
Note:	Example:		
	A value of 0.05 means that for a torque equal to the rated motor torque, the rated motor speed is reduced by 5%.		

$\mathbf{r 1 4 9 0}$	CO: Droop feedback speed reduction / Droop n_reduction		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6030
	Min	Max	Factory setting
	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$	$-[\mathrm{rpm}]$
Description:	Displays the output signal of the droop calculation. The droop feedback result is subtracted from the speed setpoint		
	when activated (p1492).		
Dependency:	Refer to: $\mathrm{p} 1486, \mathrm{p} 1487, \mathrm{p} 1488, \mathrm{p} 1489, \mathrm{p} 1492$		

p1492[0...n]	BI: Droop feedback enable / Droop enable		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2520, 6030
	Min	Max	Factory setting
	-	-	0
Description:	Enables the droop to be applied to the speed/velocity setpoint.		
Dependency:	Refer to: p1486, p1487, p1488, p1489, r1490		
Note:	Even when not enabled, the droop speed is calculated but not subtracted from the setpoint speed. This makes it possible to subtract the result of this calculation from the speed of another drive.		
r1493	CO: Moment of inertia total / M_inertia total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: 25_1	Unit selection: p0100	Func. diagram: 6031
	Min	Max	Factory setting
	- [kgm^{2}]	- [kgm^{2}]	- [kgm $\left.{ }^{2}\right]$
Description:	Displays the parameterized total moment of inertia ((p0341 * p0342) * p1496).		
p1496[0...n]	Acceleration pre-control scaling / a_prectrl scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1700, 6031
	Min	Max	Factory setting
	0.0 [\%]	10000.0 [\%]	0.0 [\%]
Description:	Sets the scaling for the acceleration pre-control of the speed/velocity controller.		
Dependency:	Refer to: p0341, p0342		
Warning:	The acceleration precontrol r1518 is kept at the old value if the ramp-function generator tracking (r1199.5) is active or the ramp-function generator output is set (r1199.3). This is used to avoid torque peaks. Depending on the application, it may therefore be necessary to disable the ramp-function generator tracking (p1145=0) or the acceleration precontrol (p1496 = 0).		
	The acceleration precontrol is set to zero, if the Vdc control is active (r0056.14/15).		
Note:	The parameter is set to 100% by the rotating measurement (refer to p1960).		
	The acceleration pre-control may not be used if the speed setpoint manifests significant ripple (e.g. analog setpoint) and the rounding-off in the speed ramp-function generator is disabled.		
	We also recommend that the pre-control mode is not used if there is gearbox backlash.		
p1499[0...n]	Accelerating for torque control scaling / a for M_ctrl scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6030
	Min	Max	Factory setting
	0.0 [\%]	400.0 [\%]	100.0 [\%]
Description:	Sets the scaling for the acceleration integrator at low speeds (only for encoderless torque control).		
Dependency:	Refer to: p0341, p0342		

r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index:-
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6030, 6060, 6722
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the torque setpoint before entering the supplementary torque.		
	For closed-loop speed control, r1508 corresponds to the speed controller output; for closed-loop torque control, r1508 corresponds to the torque setpoint of the signal source assigned in p1503.		
p1511[0...n]	CI: Supplementary torque $1 / \mathrm{M}$ _suppl 1		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 5060, 6060
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for supplementary torque 1.		
p1512[0...n]	Cl : Supplementary torque 1 scaling / M_suppl 1 scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 5060, 6060
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for scaling the supplementary torque 1.		

p1513[0...n]	CI: Supplementary torque 2 / M_suppl 2		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2003	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 5060, 6060
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for supplementary torque 2.		
p1514[0...n]	Supplementary torque 2 scaling / M_suppl 2 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1700, 6060
	Min	Max	Factory setting
	-2000.0 [\%]	2000.0 [\%]	100.0 [\%]
Description:	Sets the scaling for supplementary torque 2.		
r1515	Supplementary torque total / M_suppl total		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 5040, 5060
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the total supplementary torque.		

$\overline{\mathbf{1 5 1 6}}$	CO: Supplementary torque and acceleration torque / M_suppl + M_accel		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6060
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the total supplementary torque and the accelerating torque.		
	The displayed value is the total of the smoothed supplementary torque and the accelerating torque (p1516 = p1518[1] + r1515).		
p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6060
	Min	Max	Factory setting
	0.00 [ms]	100.00 [ms]	4.00 [ms]
Description:	Sets the smoothing time constant of the accelerating torque.		
Note:	The acceleration pre-control is inhibited if the smoothing is set to the maximum value.		
r1518[0...1]	CO: Accelerating torque / M_accel		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6060
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the accelerating torque for pre-control of the speed controller.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed }} \end{aligned}$		
Dependency:	Refer to: p0341, p0342, p1496		
p1520[0...n]	CO: Torque limit upper / M_max upper		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 1700, 6630
	Min	Max	Factory setting
	-1000000.00 [Nm]	20000000.00 [Nm]	
Description:	Sets the fixed, upper torque limit.		
Dependency:	Refer to: p1521, p1522, p1523, r1538, r1539		
Danger: 1	Negative values when setting the upper torque limit $(\mathrm{p} 1520<0)$ can result in the motor accelerating in an uncontrollable fashion.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	The torque limit is limited to 400% of the rated motor torque. When automatically calculating the motor/closed-loop control parameters (p 0340), the torque limit is set to match the current limit (p 0640).		
p1521[0...n]	CO: Torque limit lower / M_max lower		
	Access level: 2	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2003	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 1700, 6630
	Min	Max	Factory setting
	-20000000.00 [Nm]	$1000000.00[\mathrm{Nm}]$	0.00 [Nm]
Description:	Sets the fixed, lower torque limit. Refer to: p1520, p1522, p1523		
Dependency:			

1.2 List of parameters

$\overline{\mathbf{1 5 2 6}}$	CO: Torque limit upper without offset / M_max up w/o offs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6060, 6630, 6640
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the upper torque limit of all torque limits without offset.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
$\overline{\text { r1527 }}$	CO: Torque limit lower without offset / M_max low w/o offs		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index:-
	Units group: 7_1	Unit selection: p0505	Func. diagram: 6060, 6630, 6640
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the lower torque limit of all torque limits without offset.		
Dependency:	Refer to: p1520, p1521, p1522, p1523, p1528, p1529		
p1528[0...n]	CI: Torque limit upper scaling / M_max upper scal		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6630
	Min	Max	Factory setting
	-	-	1524[0]
Description:	Sets the signal source for the scaling of the upper torque limit in p1522.		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
1	Negative values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1529[0...n]	CI: Torque limit lower scaling / M_max lower scal		
	Access level: 4	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6630
	Min	Max	Factory setting
			1525[0]
Description:	Sets the signal source for the scaling of the lower torque limit in p1523.		
Danger:	For p1400.4 $=0$ (torque limiting, upper/lower) the following applies:		
\triangle	Positive values resulting from the signal source and scaling can cause the motor to accelerate in an uncontrolled manner.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p1530[0...n]	Power limit motoring / P_max mot		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 14_5	Unit selection: p0505	Func. diagram: 6640
	Min	Max	Factory setting
	0.00 [kW]	100000.00 [kW]	0.00 [kW]
Description:	Sets the power limit when motoring.		
Dependency:	Refer to: p0500, p1531		
Note:	The power limit is limited to 300% of the rated motor power.		

p1531[0...n]	Power limit regenerative / P_max gen		
	Access level: 2	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 14_5	Unit selection: p0505	Func. diagram: 6640
	Min	Max	Factory setting
	-100000.00 [kW]	-0.01 [kW]	-0.01 [kW]
Description:	Sets the regenerative power limit.		
Dependency:	Refer to: r0206, p0500, p1530		
Note:	The power limit is limited to 300% of the rated motor power.		
	For power units without energy recovery capability, the regenerative power limit is preset to 30% of the power r0206[0]. For a braking resistor connected to the DC link (p0219 > 0), the power limit when generating is automatically adapted. For power units with energy recovery, the parameter is limited to the negative value of r0206[2].		

r1533	Current limit torque-generating total / Iq_max total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
Can be changed: -	Scaling: p2002	Dyn. index: -	
	Units group: $6 _2$	Unit selection: p0505	Func. diagram: $5640,5722,6640$
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	$-[$ Arms $]$

Description: Displays the maximum torque/force generating current as a result if all current limits.

r1536[0...1]	Current limit maximum torque-generating current / Isq_max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: $6 _2$	Unit selection: p0505	Func. diagram: 6640, 6710
	Min	Max	Factory setting
	$-[$ Arms $]$	- [Arms $]$	$-[$ Arms $]$
Description:	Displays the maximum limit for the torque-generating current component.		
	Index 0 indicates the signal limited by the Vdc controller.		
Index:	$[0]=$ Limited		
	$[1]=$ Unlimited		

r1537[0...1]	Current limit minimum torque-generating current / Isq_min		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: $6 _2$	Unit selection: p0505	Func. diagram: 6640,6710
	Min	Max	Factory setting
	$-[$ Arms $]$	$-[$ Arms $]$	$-[$ Arms $]$
Description:	Displays the minimum limit for the torque-generating current component.		
	Index 0 indicates the signal limited by the Vdc controller.		

Index: [0] = Limited
[1] = Unlimited

r1538	CO: Upper effective torque limit / M_max upper eff		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 1610, 1700, 5610, 5650, 6060, 6640
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the currently effective upper torque limit.		

1.2 List of parameters

The effective upper torque limit is reduced with respect to the selected upper torque limit p1520, if the current limit
p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.
This may be the case for rotating measurements (see p1960).
The torque limit p1520 can be re-calculated using p0340 $=1,3$ or 5 .

r1539	CO: Lower effective torque limit / M_max lower eff		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: 7_1	Unit selection: p0505	Func. diagram: 1610, 1700, 5610, 5650, 6060, 6640
	Min	Max	Factory setting
	- [Nm]	- [Nm]	- [Nm]
Description:	Displays the currently effective lower torque limit.		
Note:	The effective lower torque limit is reduced with respect to the selected lower torque limit p1521, if the current limit p0640 is reduced or the rated magnetizing current of the induction motor p0320 is increased.		
	This may be the case for rotating measurements (see p1960).		
	The torque limit p1520 can be re-calculated using p0340 = 1, 3 or 5 .		

r1547[0...1]	CO: Torque limit for speed controller output / M_max outp n_ctrl		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2003	Dyn. index: -
	Units group: $7 _1$	Unit selection: p0505	Func. diagram: 6060
	Min	Max	Factory setting
	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$	$-[\mathrm{Nm}]$

Description: Displays the torque limit to limit the speed controller output.

Index:	$[0]=$ Upper limit
	$[1]=$ Lower limit

r1548[0...1]	CO: Stall current limit torque-generating maximum / Isq_max stall		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: $6 _2$	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
Description:	$-[$ Arms $]$	$-[$ Arms $]$	- [Arms $]$
	Displays the limit for the torque-generating current component using the stall calculation, the current limit of the		
	power unit as well as the parameterization in p0640.		

Index: $\quad[0]=$ Upper limit
[1] = Lower limit

p1552[0...n]	Cl: Torque limit upper scaling without offset / M_max up w/o offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6060
	Min	-	Factory setting
Description:	-	1	

p1553[0...n]	Stall limit scaling / Stall limit scal		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	80.0 [\%]	130.0 [\%]	100.0 [\%]
Description:	Sets the scaling of the stall limit for the start of field weakening.		
Danger:	If the stall current limit is increased, then the q current setpoint can exceed the stall limit; as a consequence, a hysteresis effect can occur when loading and unloading.		
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 6060
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the scaling of the lower torque limiting to limit the speed controller output without taking into account the current and power limits.		
p1570[0...n]	CO: Flux setpoint / Flex setp		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	50.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the flux setpoint referred to rated motor flux.		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
Note:	For p1570 $>100 \%$, the flux setpoint increases as a function of the load from 100% (no-load operation) to the setting in p1570 (above rated motor torque), if p1580 > 0\% has been set.		
p1573[0...n]	Flux threshold value magnetizing / Flux thresh magnet		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	10.0 [\%]	200.0 [\%]	100.0 [\%]
Description:	Sets the flux threshold value for enabling the speed setpoint and the end of magnetizing (r0056.4).		
Note:	The parameter only has an influence if the flux actual value reaches the threshold value p1573 more quickly during magnetizing than the time set in p0346.		
	The parameter has no influence for flying restart (see p1200) and after DC braking (see p1231).		
p1574[0...n]	Voltage reserve dynamic / U_reserve dyn		
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6723, 6724
	Min	Max	Factory setting
	0.0 [Vrms]	150.0 [Vrms]	10.0 [Vrms]
Description:	Sets a dynamic voltage reserve.		
Dependency:	Refer to: p0500		
Note:	In the field weakening range, it must be expected that the control dynamic performance is somewhat restricted due to the limited possibilities of controlling/adjusting the voltage. This can be improved by increasing the voltage reserve. Increasing the reserve reduces the steady-state maximum output voltage (r0071).		

p1580[0...n]	Efficiency optimization / Efficiency opt.		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	0 [\%]	100 [\%]	0 [\%]
Description:	Sets the efficiency optimization.		
	When optimizing the efficiency, the flux setpoint of the closed-loop control is adapted as a function of the load.		
	For p1580 $=100 \%$, under no-load operating conditions, the flux setpoint is reduced to 50% of the rated motor flux.		
Note:	It only makes sense to activate this function if the dynamic response requirements of the speed controller are low. In order to avoid oscillations, if required, the speed controller parameters should be adapted (increase Tn , reduce Kp).		
	Further, the smoothing time of the flux setpoint filter (p1582) should be increased.		
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth		
	Access level: 3	Calculated: p0340 $=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6722, 6724
	Min	Max	Factory setting
	4 [ms]	5000 [ms]	15 [ms]
Description:	Sets the smoothing time for the flux setpoint.		
r1583	Flux setpoint smoothed / Flux setp smooth		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 6722, 6723, 6724
	Min	Max	Factory setting
	- [\%]		- [\%]
Description:	Displays the smoothed flux setpoint.		
	The value is referred to the rated motor flux.		
p1584[0...n]	Field weakening operation flux setpoint smoothing time / Field weak T_smth		
	Access level: 4	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6722
	Min	Max	Factory setting
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the smoothing time for the flux setpoint in the field-weakening range		
Recommend.:	Smoothing should be especially used if there is no regenerative feedback into the line supply. This means that the DC link voltage can quickly increase in regenerative operation		
Note:	Only the flux setpoint rise is smoothed		
r1589	Field-weakening current pre-control value / __FieldWeak prectr		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6724
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the pre-control value for the field weakening current.		

r1593[0...1]	CO: Field weakening controller / flux controller output / Field/FI_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6724
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Display and connector output for the output of the field weakening controller (synchronous motor). [0] = PI output		
Index:	[0] = Pl output [1] = I output		
p1594[0...n]	Field-weakening controller P gain / Field_ctrl Kp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6724
	Min	Max	Factory setting
	0.00	1000.00	0.00
Description:	Sets the P gain of the field-weakening controller.		
p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6723, 6724
	Min	Max	Factory setting
	10 [ms]	10000 [ms]	300 [ms]
Description:	Sets the integral-action time of the field-weakening controller.		
r1597	CO: Field weakening controller output / Field_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the output of the field weakening controller.		
	The value is referred to the rated motor flux.		
r1598	CO: Total flux setpoint / Flux setp total		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6714, 6723, 6724, 6725, 6726, 8018
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective flux setpoint.		

p1610[0...n]	Torque setpoint static (SLVC) / M_set static		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1710, 6721, 6722, 6726
	Min	Max	Factory setting
	-200.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the static torque setpoint for sensorless vector control (SLVC).		
	This parameter is entered as a percentage referred to the rated motor torque (r0333).		
	For sensorless vector control, when the motor model is shut down, an absolute current is impressed. p1610 represents the maximum load that occurs at a constant setpoint speed.		
Notice:	p1610 should always be set to at least 10% higher than the maximum steady-state load that can occur.		
Note:	For p1610 $=0 \%$, a current setpoint is calculated that corresponds to the no-load case (ASM: rated magnetizing current).		
	For p1610 $=100 \%$, a current setpoint is calculated that corresponds to the rated motor torque.		
	Negative values are converted into positive setpoints in the case of induction and permanent-magnet synchronous motors.		
p1611[0...n]	Supplementary accelerating torque (SLVC) / M_suppl_accel		
	Access level: 2	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1710, 6721, 6722, 6726
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	30.0 [\%]
Description:	Enters the dynamic torque setpoint for the low-speed range for sensorless vector control (SLVC). This parameter is entered as a percentage referred to the rated motor torque (r0333).		
Note:	When accelerating and braking p1611 is added to p1610 and the resulting total torque is converted into an appropriate current setpoint and controlled.		
	For pure accelerating torques, it is always favorable to use the torque pre-control of the speed controller (p1496).		
r1614	EMF maximum / EMF max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6725
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual maximum possible electromotive force (EMF) of the separately-excited synchronous motor. The value is the basis for the flux setpoint.		
Dependency:			
	The maximum possible EMF depends on the following factors:		
	- Actual DC link voltage (r0070).		
	- Maximum modulation depth (p1803).		
	- Field-generating and torque-generating current setpoint.		
p1616[0...n]	Current setpoint smoothing time / I_set T_smooth		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6721, 6722
	Min	Max	Factory setting
	4 [ms]	10000 [ms]	40 [ms]
Description:	Sets the smoothing time for the current setpoint.		
	The current setpoint is generated from p1610 and p1611.		
Note:	This parameter is only effective in the range where current is injected for sensorless vector control.		

r1623[0..1]	Field-generating current setpoint (steady-state) / Id_set stationary		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6723
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the steady-state field generating current setpoint (Id_set).		
Note:	Re index 1:		
	Reserved.		
r1624	Field-generating current setpoint total / Id_setp total		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2002	Dyn. index: -
	Units group: 6_2	Unit selection: p0505	Func. diagram: 6640, 6721, 6723, 6727
	Min	Max	Factory setting
	- [Arms]	- [Arms]	- [Arms]
Description:	Displays the limited field-generating current setpoint (ld_set).		
	This value comprises the steady-state field-generating current setpoint r1623 and a dynamic component that is only set when changes are made to the flux setpoint.		
p1654[0...n]	Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6710
	Min	Max	Factory setting
	0.1 [ms]	50.0 [ms]	4.8 [ms]
Description:	Sets the smoothing time constant for the setpoint of the torque-generating current components.		
Note:	The smoothing time does not become effective until the field-weakening range is reached.		
p1703[0...n]	Isq current controller pre-control scaling / Isq_ctr_prectrScal		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6714
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	60.0 [\%]
Description:	Sets the scaling of the dynamic current controller pre-control for the torque/force-generating current component Isq.		
p1715[0...n]	Current controller P gain / I_ctrl Kp		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6714
	Min	Max	Factory setting
	0.000	100000.000	0.000
Description:	Sets the proportional gain of the current controller.		

p1717[0..n]	Current controller integral-action time / I_ctrl Tn		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 1710, 5714, 6714, 7017
	Min	Max	Factory setting
	0.00 [ms]	1000.00 [ms]	2.00 [ms]
Description:	Sets the integral-action time of the current controller.		
Dependency:	Refer to: p1715		
r1718	CO: Isq controller output / Isq_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6714
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the Isq current controller (torque/force generating current, PI controller). The value contains the proportional and integral components of the PI controller.		
r1719	Isq controller integral component / Isq_ctrl I_comp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6714
	Min		Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the integral component of the Isq current controller (torque/force-generating current, PI controller).		
r1723	CO: Isd controller output / Isd_ctrl outp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6714
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the Isd current controller (flux-generating current, PI controller). The value contains the proportional and integral components of the PI controller.		
r1724	Isd controller integral component / Isd_ctrl I_comp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6714
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	
Description:	Displays the integral component of the Isd current controller (flux-generating current, PI controller).		
r1725	Isd controller integral component limit / Isd_ctrl I_limit		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 6714
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	
Description:	Displays the limit value for the integral component of the Isd current controller.		

p1726[0...n]	Quadrature arm decoupling scaling / Transv_decpl scal		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6714
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	75.0 [\%]
Description:	Sets the scaling of the quadrature arm decoupling		
Note:	This parameter is ineffective for sensorless vector control. In this case, p1727 is always used. If p1726 is set to 0 , then the quadrature de-coupling is de-activated. The integral component of the Isd current controller remains effective in the complete speed control range.		
	For the closed-loop control of synchronous motors, this parameter is used to scale the current controller de-coupling.		
p1727[0...n]	Quadrature arm decoupling at voltage limit scaling / TrnsvDecpIVmaxScal		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6714
	Min	Max	Factory setting
	0.0 [\%]	200.0 [\%]	50.0 [\%]
Description:	Sets the scaling of quadrature arm decoupling when the voltage limit is reached.		
r1728	De-coupling voltage in-line axis / U_dir-axis_decoupl		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the quadrature channel de-coupling for the d axis.		
$\overline{\mathbf{r 1 7 2 9}}$	De-coupling voltage quadrature axis / U_quad_decoupl		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the actual output of the quadrature channel de-coupling for the q axis.		
p1730[0...n]	Isd controller integral component shutdown threshold / Isd_ctr I_compDeac		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	30 [\%]	150 [\%]	30 [\%]
Description:	Sets the speed threshold for deactivating the integral component of the Isd controller. The d current controller is only effective as P controller for speeds greater than the threshold value. Instead of the integral component, the quadrature arm decoupling is effective.		
Warning:	For settings above 80%, the d current controller is active up to the field weakening limit. When operated at the voltage limit, this can result in an unstable behavior. In order to avoid this, the dynamic voltage reserve p1574 should be increased.		
Note:	The parameter value is referred to the synchronous rated motor speed.		

p1731[0...n]	Isd controller combination current time component / Isd ctrl iCombi T1		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [ms]	10000.00 [ms]	0.00 [ms]
Description:	Sets the time constant to calculate the d current DC component difference (combination current) to add to the d current controller actual value. The additional input is de-activated with p1731 $=0$.		

r1732[0...1]	CO: Direct-axis voltage setpoint / Direct U set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_1	Unit selection: p0505	Func. diagram: 1630, 5714, 6714, 5718
	Min	Max	Factory setting
	- [Vrms]	- [Vrms]	- [Vrms]
Description:	Displays the direct-axis voltage setpoint Ud.		
Index:	$\begin{aligned} & {[0]=\text { Unsmoothed }} \\ & {[1]=\text { Smoothed with }} \end{aligned}$		

r1733[0...1]	CO: Quadrature-axis voltage setpoint / Quad U set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: $5 _1$	Unit selection: p0505	Func. diagram: $1630,5714,5718$,
			6714,6719
	Min	Max	Factory setting
	$-[V r m s]$	$-[V \mathrm{rms}]$	
Description:	Displays the quadrature-axis component of voltage setpoint Uq.		
Index:	$[0]=$ Unsmoothed		
	$[1]=$ Smoothed with p0045		

p1740[0...n] Gain resonance damping for encoderless closed-loop control / Gain res_damp
Access level: $3 \quad$ Calculated: $p 0340=1,3,4 \quad$ Data type: FloatingPoint32
Can be changed: U, T Scaling: - Dyn. index: DDS, p0180
Units group: - Unit selection: - Func. diagram: -
Min Max Factory setting
$0.000 \quad 10.000 \quad 0.025$

Description: Defines the gain of the controller for resonance damping for operation with sensorless vector control in the range that current is injected.

p1745[0...n]	Motor model error threshold stall detection / MotMod ThreshStall		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [\%]	1000.0 [\%]	5.0 [\%]
Description:	Sets the fault threshold in order to detect a motor that has stalled. If the error signal (r1746) exceeds the parameterized error threshold, then status signal r1408.12 is set to 1 .		
Dependency:	If a stalled drive is detected (r1408.12 = 1), fault F07902 is output after the delay time set in p2178. Refer to: p2178		
Note:	Monitoring is only effective	speed range (below p1755	p1756)).

1.2 List of parameters

If bit $2=1$, then bit 3 is automatically set to 1 . Manual de-selection is possible and may be sensible if the saturation characteristic (p 1960) was not measured for third-party motors. Generally, for standard SIEMENS motors, the already pre-assigned (default value) saturation characteristic is adequate.
When the bit is set, the selection of bits 0 and 1 is ignored.
Re bit $2=0$:
Bit 3 is also automatically deactivated.
Re bit $6=1$:
The following applies for encoderless vector control of induction motors:
For a blocked motor (see p2175, p2177) the time condition in p1758 is bypassed and a change is not made into open-loop controlled operation.
Re bit 7 = 1 :
The following applies for encoderless vector control of induction motors:
If the changeover limits are parameterized too low ($\mathrm{p} 1755, \mathrm{p} 1756$), then they are automatically increased to rugged values by the absolute amount p1749 * p1755.

The effective time condition for changing over into open-controlled operation is given by $\operatorname{Min}(p 1758,0.5$ * r0384). Activation can make sense for applications that demand a high torque at low frequencies and therefore low speed gradients.
Adequate parameterization must be ensured (p1610, p1611).

r1751	Motor model status / MotMod status				
	Access level: 3		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-	-		-	
Description:	Displays the status of the motor model.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Controlled operation	Active	Inactive	6721
	01	Set ramp-function generator	Active	Inactive	-
	02	Stop RsLh adaptation	Yes	No	-
	03	Feedback	Active	Inactive	-
	05	Holding angle	Yes	No	-
	06	Acceleration criterion	Active	Inactive	-
	07	Set angular integrator PEM	No	Yes	-
	08	Stop Kt adaptation PEM	No	Yes	-
	09	Polld active PEM SLVC	No	Yes	-
	10	1 injection PEM	No	Yes	-
	11	Speed controller output cannot be set to zero	Yes	No	-
	12	Rs adapt waits	Yes	No	-
	13	Motor operation	Yes	No	-
	14	Stator frequency sign	Positive	Negative	-
	15	Torque sign	Motor mode	Regenerative mode	-
	16	Pulse injection active PEM	Yes	No	-
	17	Operation with rugged model feedback	Enabled	Inhibited	-
	18	Operation of the current model with current feedback	Enabled	Inhibited	-
	19	Current feedback in the current model	Active	Inactive	-
	20	Rugged increase of the changeover limits	Active	Inactive	-
		Motor blocked (RFG stop) PEM	No	Yes	-
Note:	Re bit 17:				
	Displays the status when enabling the rugged model feedback (p1784) for operation with and without encoder.				
	The feedback is used to increase the parameter ruggedness of the motor model and is effective in the operating range of the two-component closed loop current control.				
	Re bit 18:				
	Displays the status when enabling the differential current feedback in the current model for operation with encoder.				
	The function is automatically enabled with p1784>0 or p1731>0. The feedback is used for a rugged change between the current model and complete machine model with active rugged model feedback and combination current.				

Re bit 19:
Displays the currently active stator circuit feedback in current model operation.
Re bit 20:
Displays the currently effective increase of the changeover limits by the value p1749 * p1755.
Re bit 21:
For a blocked synchronous motor, the speed ramp-function generator is held in the open-loop speed controlled operating range if the torque setpoint reaches the torque limit and the speed is less than the threshold value in p2175.

p1755[0...n]	Motor model changeover speed encoderless operation / MotMod n_chgSnsorl		
	Access level: 3	Calculated: p0340 $=1,3$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	210000.00 [rpm]
Description:	Sets the speed to change over the motor model to encoderless operation.		
Dependency:	Refer to: p1749, p1756		
Notice:	The changeover speed represents the steady-state minimum speed up to which the motor model can be used in sensorless steady-state operation.		
	If the stability is not adequate close to the changeover speed, it may make sense to increase the parameter value. On the other hand, very low changeover speeds can negatively impact the stability.		
Note:	The changeover speed applies for the changeover between open-loop and closed-loop control mode.		
p1756	Motor model changeover speed hysteresis encoderless operation / MotMod n_chgov hys		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 6730, 6731
	Min	Max	Factory setting
	0.0 [\%]	95.0 [\%]	50.0 [\%]
Description:	Sets the hysteresis for the changeover speed of the motor model for encoderless operation.		
Dependency:	Refer to: p1755		
Note:	The parameter value refers to p 1755 . Extremely small hystereses can have a negative impact on the stability in the changeover speed range, and very high hystereses in the standstill range.		
p1758[0...n]	Motor model changeover delay time closed/open-loop control / MotMod t cl_op		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	100 [ms]	10000 [ms]	500 [ms]
Description:	Sets the minimum time for falling below the changeover speed when changing from closed-loop controlled operation to open-loop controlled operation.		
Dependency:	Refer to: p1755, p1756		
p1759[0...n]	Motor model changeover delay time open/closed-loop control / MotMod top_cl		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	2000 [ms]	0 [ms]
Description:	Sets the minimum time for a transition from open-loop controlled to closed-loop controlled operation after the lower changeover speed p1755 * (1 - p1756 / 100%) has been exceeded.		
Dependency:	Refer to: p1755, p1756		

1.2 List of parameters

Note:	With p1759 = 2000 ms , the delay time becomes ineffective and the model changeover is determined by the output frequency only (changeover for p1755).
r1762[0...1]	Motor model deviation component 1 / MotMod dev comp 1
	Access level: 4 Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: 6721, 6730,6731
	Min Max Factory setting
	- -
Description:	Induction motor (ASM):
	Displays the referred imaginary system deviation for the adaptation circuit of the motor model.
	Permanent magnet synchronous motor (PEM):
	Displays the system deviation for speed adaptation.
	r1762[0]: Angular deviation [rad-el] of the estimated EMF.
	r1762[1]: Angular deviation [rad-el] of the low-level signal response for pulse technique.
Index:	[0] = Deviation model 1 [1] = Deviation model 2

r1763	Motor model deviation component $2 /$ MotMod dev comp 2		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	-	Factory setting
Description:	-	-	
	Induction motor (ASM):		
	Displays the referred real system deviation for the adaptation circuit of the motor model.		
	Permanent magnet synchronous motor (PEM):		
	Not used.		

p1764[0...n] Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp

Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: FloatingPoint32
Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
Units group: -	Unit selection: -	Func. diagram: 6730
Min	Max	Factory setting
0.000	100000.000	1000.000

Description: Sets the proportional gain of the controller for speed adaptation without encoder.

r1765	Motor model speed adaptation Kp effective / MotM n_ada Kp act		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	
Description:	Displays the effective proportional gain of the controller for the speed adaptation.		

p1767[0...n]	Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn		
	Access level: 4	Calculated: p0340 = 1,3,4	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6730
	Min	Max	Factory setting
	$1[\mathrm{~ms}]$	$200[\mathrm{~ms}]$	4 [ms]
Description:	Sets the integral time of the controller for speed adaptation without encoder		

r1768	Motor model speed adaptation Vi effective / MotM n_ada Vi act		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the effective gain of the integral component of the controller for speed adaptation.		
r1770	CO: Motor model speed adaptation proportional component / MotMod n_adapt Kp		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6730
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the P component of the controller for speed adaptation.		
r1771	CO: Motor model speed adaptation I comp. / MotMod n_adapt Tn		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 6730
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the I component of the controller for speed adaptation.		
r1773[0...1]	Motor model slip speed / MotMod slip		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays estimated (speed) signals of the motor model. r1773[0]: Displays the estimated (mechanical) slip of the motor model. r1773[1]: Displays the estimated input speed of the motor model.		
Index:	$\begin{aligned} & {[0]=\text { Slip speed estimated }} \\ & {[1]=\text { Speed estimated }} \end{aligned}$		
p1774[0...n]	Motor model offset voltage compensation alpha / MotMod offs comp A		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-5.000 [V]	5.000 [V]	0.000 [V]
Description:	Sets the offset voltage in the alpha direction; this compensates the offset voltages of the drive converter/inverter at low speeds. The value is valid for the rated (nominal) pulse frequency of the power unit.		
Note:	The value is pre-set durin	ing measurement.	

p1775[0...n]	Motor model offset voltage compensation beta / MotMod offs comp B		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	$5.000[\mathrm{~V}]$	Factory setting
	$-5.000[\mathrm{~V}]$	$0.000[\mathrm{~V}]$	
Description:	Sets the offset voltage in the beta direction; this compensates the offset voltages of the drive converter/inverter at low		
	speeds. The value is valid for the rated (nominal) pulse frequency of the power unit.		
Note:	The value is pre-set during the rotating measurement.		

r1776[0...6]	Motor model status signals / MotMod status sig		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the internal status signals of the motor model:		
	Index 0: Changeover ramp between current and voltage models		
	Index 1: Changeover ramp for model tracking (encoderless induction motors only)		
	Index 2: Changeover ramp for zero frequency range (encoderless induction motors only)		
	Index 6: Transition ramp for EMF deviation at PLL input (encoderless PESM)		
Index:	[0] = Changeover ramp motor model		
	[1] = Changeover ramp model tracking		
	[2] = Changeover ramp zero frequency encoderless ASM		
	[3] = Reserved		
	[4] = Reserved		
	[5] = Reserved		
	[6] = Changeover ramp motor model encoderless PESM		

r1778	Motor model flux angle difference / MotMod ang diff		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2005	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-\left[\left[^{\circ}\right]\right.$	$-\left[^{\circ}\right]$	$-\left[{ }^{\circ}\right]$
Description:	Displays the difference between the motor model flux angle and the transformation angle.		
Dependency:	A setting for smoothing the display can be made using p1754.		

p1780[0...n]	Motor model adaptation configuration / MotMod adapt conf		
	Access level: 4	Calculated: $\mathrm{p} 0340=1,3,4$	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0000000001011100 bin

Description: Sets the configuration for the adaptation circuit of the motor model.
Induction motor (ASM): Rs, Lh, and offset compensation.
Permanent magnet synchronous motor (PEM): kT
Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal	FP
01	Select motor model ASM Rs adaptation	Yes	No	-
02	Select motor model ASM Lh adaptation	Yes	No	-
03	Select motor model PEM kT adaptation	Yes	No	-
04	Select motor model offset adaptation	Yes	No	-

1.2 List of parameters

r1791	Motor model Lh adaptation power-on frequency / MotMod Lh f_on		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [Hz]	- [Hz]	- [Hz]
Description:	Displays the power-on stator frequency/ primary section frequency for the Lh adaptation for the induction motor (ASM).		
r1792	Motor model Lh adaptation power-on slip / MotMod Lh fslip		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[\mathrm{Hz}]$	- [Hz]	- [Hz]
Description:	Displays the power-on slip frequency for the Lh adaptation for the induction motor (ASM).		
p1800[0...n]	Pulse frequency setpoint / Pulse freq setp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	2.000 [kHz$]$	16.000 [kHz]	4.000 [kHz]
Description:	Sets the pulse frequency for the converter.		
	This parameter is pre-set to the rated converter value when the drive is first commissioned.		
Note:	The maximum possible pulse frequency is also determined by the power unit being used.		
	When the pulse frequency is increased, depending on the particular power unit, the maximum output current can be reduced (derating, refer to r0067).		
	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3$), then the pulse frequency cannot be set below the minimum value required for the filter.		
	For operation with output reactors, the pulse frequency is limited to 4 kHz (see p0230).		
	If p 1800 is changed during commissioning ($\mathrm{p} 0010>0$), then it is possible that the old value will no longer be able to be set. The reason for this is that the dynamic limits of p1800 have been changed by a parameter that was set when the drive was commissioned (e.g. p1082).		

r1801[0...1]	CO: Pulse frequency / Pulse frequency		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [kHz]	- [kHz]	- [kHz]
Description:	Display and connector output for the actual converter switching frequency. [0 = Actual		
Index:	[0] = Actual [1] = Modulator minimum value		
Note:	The selected pulse frequency (p 1800) may be reduced if the drive converter has an overload condition (p0290).		
p1802[0...n]	Modulator mode / Modulator mode		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	10	0
Description:	Sets the modulator mode.		

Value:	0: Automatic changeover SVM/FLB		
	2: Space vector modulation (SVM)		
	3: SVM without overcontrol		
	4: SVM/FLB without overco		
	10: SVM/FLB with modulation depth reduction		
Dependency:	If a sine-wave filter is parameterized as output filter ($\mathrm{p} 0230=3,4$), then only space vector modulation without overcontrol can be selected as modulation type ($\mathrm{p} 1802=3$). This does not apply to power units PM260.		
	p1802 = 10 can only be set for power units PM230 and PM240 and for r0204.15 $=0$.		
	Refer to: p0500		
Note:	When modulation modes are enabled that could lead to overmodulation ($p 1802=0,2,10$), the modulation depth must be limited using p1803 (default, p1803 < 100%). The higher the overmodulation, the greater the current ripple and torque ripple.		
	When changing p1802[x], the values for all of the other existing indices are also changed.		
p1803[0...n]	Maximum modulation depth / Modulat depth max		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 6723
	Min	Max	Factory setting
	20.0 [\%]	150.0 [\%]	106.0 [\%]
Description:	Defines the maximum modulation depth.		
Dependency:	Refer to: p0500		
Note:	$p 1803=100 \%$ is the overcontrol limit for space vector modulation (for an ideal drive converter without any switching delay).		
p1806[0...n]	Filter time constant Vdc correction / T_filt Vdc_corr		
	Access level: 4	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	0.0 [ms]
Description:	Sets the filter time constant of the DC link voltage used to calculate the modulation depth.		
r1808	DC link voltage actual value for U_max calculation / Vdc act val U_max		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2001	Dyn. index: -
	Units group: 5_2	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	- [V]	- [V]	- [V]
Description:	DC link voltage used to determine the maximum possible output voltage.		
r1809	CO: Modulator mode actual / Modulator mode act		
	Access level: 4	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	9	-
Description:	Displays the effective modulator mode.		
Value:	1: Flat top modulation (FLB) 2: Space vector modulation (SVM) 9: Optimized pulse pattern		

p1825	Converter valve threshold voltage / Threshold voltage		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [Vrms]	100.0 [Vrms]	0.6 [Vrms]
Description:	Sets the threshold voltage drop of the valves (power semiconductor devices) to be compensated.		
Note:	The value is automatically calculated in the motor data identification routine.		
p1828	Compensation valve lockout time phase U / Comp t_lock ph U		
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	3.99 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase U.		
Note:	The value is automatically calculated in the motor data identification routine.		
p1829	Compensation valve lockout time phase V / Comp t_lock ph V		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	3.99 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase V.		
p1830	Compensation valve lockout time phase W / Comp t_lock ph W		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [$\mu \mathrm{s}$]	3.99 [$\mu \mathrm{s}$]	0.00 [$\mu \mathrm{s}$]
Description:	Sets the valve lockout time to compensate for phase W .		
p1832	Dead time compensation current level / t_dead_comp I_lev		
	Access level: 4	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.0 [Arms]	10000.0 [Arms]	0.0 [Arms]
Description:	Above the current level, the dead time - resulting from the converter switching delays - is compensated by a previously calculated constant value. If the relevant phase current setpoint falls below the absolute value defined by p1832, the corrective value for this phase is continuously reduced.		
Dependency:	The factory setting of p1832 is automatically set to 0.02 * rated drive converter current (r0207).		

p1901	Test pulse evaluation configuration / Test puls config			
	Access level: 3 Calculat	: $\mathrm{p} 0340=1$	Data type: Unsigned32	
	Can be changed: T Scaling:		Dyn. index: -	
	Units group: - Unit sele	ion: -	Func. diagram: -	
	Min Max		Factory setting	
	- -		0000 bin	
Description:	Sets the configuration for the test pulse evaluation.			
	Bit 00: Check for conductor-to-conductor short circuit once/always when the pulses are enabled.			
	Bit 01: Check for ground fault once/always when the pulses are enabled.			
	Bit 02: Activation of the tests selected using bit 00 and/or bit 01 each time the pulses are enabled			
Bit field:	Bit Signal name 00 Phase short-circuit test pulse active 01 Ground fault detection test pulse active 02 Test pulse at each pulse enable	1 signal	0 signal	FP
		Yes	No	
		Yes	No	-
		Yes	No	-
Dependency: Note:	Refer to: p0287			
	Re bit 02=0:			
	If the test was successful once after POWER ON (see r1902.0), it is not repeated. Re bit 02=1:			
	The test is not only performed after POWER ON, but also each time the pulses are enabled.			
	If a conductor-to-conductor short-circuit is detected during the test, this is displayed in r1902.1. If a ground fault is detected during the test, this is displayed in r1902.2.			
r1902	Test pulse evaluation status / Test puls ev stat			
	Access level: $4 \quad$ Calculat		Data type: Unsigned32	
	Can be changed: - Scaling:		Dyn. index: -	
	Units group: - Unit sele	ion: -	Func. diagram: -	
	Min Max		Factory setting	
	- -		-	
Description:	Displays the status of the test pulse evaluation.			
	Short-circuit test:			
	Bit 0: The short-circuit test was executed without any fault.			
	Bit 1: A phase short circuit has been detected.			
	Bit 2: A ground fault test was successfully performed.			
	Bit 3: A ground fault was detected.			
	Bit 4: A test pulse longer than one sampling time has occurred			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Short-circuit test executed	Yes	No	-
	01 Phase short-circuit detected	Yes	No	-
	02 Ground fault test successfully performed	Yes	No	-
	03 Ground fault detected	Yes	No	-
	04 Identification pulse width greater than the minimum pulse width	Yes	No	
Note:	If the ground fault test was selected, but not successfully performed, then sufficient current will not be able to be established during the test pulse.			
p1909[0...n]	Motor data identification control word / MotID STW			
	Access level: $3 \quad$ Calcula	: $\mathrm{p} 0340=1$	Data type: Unsigned32	
	Can be changed: T	Scaling: -	Dyn. index: MDS	
	Units group: -	Unit selection: -	Func. diagram:	
	Min Max		Factory setting	
	- -		00000000000000000000000000000000 bin	
Description:	Sets the configuration for the motor data identifi	tion.		

1.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Stator inductance estimate no measurement	Yes	No	-
	02	Rotor time constant estimate no measurement	Yes	No	-
	03	Leakage inductance estimate no measurement	Yes	No	-
	05	Determine Tr and Lsig evaluation in the time range	Yes	No	-
	06	Activate vibration damping	Yes	No	-
	07	De-activate vibration detection	Yes	No	-
	11	De-activate pulse measurement Lq Ld	Yes	No	-
	12	De-activate rotor resistance Rr measurement	Yes	No	-
	14	De-activate valve interlocking time measurement	Yes	No	-
	15	Determine only stator resistance, valve voltage fault, dead time	Yes	No	-
	16	Short motor identification (lower quality)	Yes	No	-
	17	Measurement without control parameter calculation	Yes	No	-

Note: The following applies to permanent-magnet synchronous motors:
Without de-selection in bit 11, in the closed-loop control mode, the direct inductance LD and the quadrature inductance Lq are measured at a low current.
When de-selecting with bit 11 or in the U/f mode, the stator inductance is measured at half the rated motor current. If the stator is inductance is not measured but is to be estimated, then bit 0 should be set and bit 11 should be deselected.
p1910 Motor data identification selection / MotID selection

Access level: 3	Calculated: -	Data type: Integer16
Can be changed: T	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
0	26	0

Description: Sets the motor data identification routine.
The motor data identification routine is carried out after the next power-on command.
p1910 = 1:
All motor data and the drive converter characteristics are identified and then transferred to the following parameters:
p0350, p0354, p0356, p0357, p0358, p0360, p1825, p1828, p1829, p1830
After this, the control parameter $\mathrm{p} 0340=3$ is automatically calculated.
p1910 = 20:
Only for internal SIEMENS use.
Value:
0 : Inhibited
1: Complete identification (ID) and acceptance of motor data
2: Complete identification (ID) of motor data without acceptance
20: Voltage vector input
21: Voltage vector input without filter
22: Rectangular voltage vector input without filter
23: Triangular voltage vector input without filter
24: Rectangular voltage vector input with filter
25: Triangular voltage vector input with filter
26: Enter voltage vector with DTC correction
Dependency: \quad "Quick commissioning" must be carried out ($\mathrm{p} 0010=1, \mathrm{p} 3900>0$) before executing the motor data identification routine!

When selecting the motor data identification routine, the drive data set changeover is suppressed.
Refer to: p1900

1.2 List of parameters

r1914[0...2]	Identified total leakage inductance / L_total_leak ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the identified total leakage inductance.		
Index:	[0] = Phase U		
	[1] = Phase V		

r1915[0...2]	Identified nominal stator inductance / L_stator ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$
Description:	Displays the nominal stator inductance identified.		
Index:	$[0]=$ Phase \cup		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1916[0...2]	Identified stator inductance 1 / L_stator 1 ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description: Index:	Displays the nominal stator inductance identified for the 1st point of the saturation characteristic. [0] = Phase U [1] = Phase V [2] = Phase W		

r1917[0...2]	Identified stator inductance 2 / L_stator 2 ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [mH]	- [mH]	- [mH]
Description:	Displays the nominal stator inductance identified for the 2nd point of the saturation characteristic.		
Index:	[0] = Phase U		
	[1] = Phase V		

r1918[0...2]	Identified stator inductance $3 / \mathrm{L}$ _stator 3 ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$
Description:	Displays the nominal stator inductance identified for the 3rd point of the saturation characteristic.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1919[0...2]	Identified stator inductance 4/L_stator 4 ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	$-[\mathrm{mH}]$	Factory setting
	$-[\mathrm{mH}]$	$-[\mathrm{mH}]$	
Description:	Displays the nominal stator inductance identified for the 4th point of the saturation characteristic.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phas V		
	$[2]=$ Phase W		

r1925[0...2]	Identified threshold voltage / U_threshold ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[V r m s]$	$-[V \mathrm{Vrms}]$	
Description:	Displays the identified IGBT threshold voltage.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1926[0...2]	Identified effective valve lockout time /t_lock_valve id		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram:
	Min	Max	Factory setting
	$-[\mu \mathrm{s}]$	$-[\mu \mathrm{s}]$	$-[\mu \mathrm{s}]$
Description:	Displays the identified effective valve lockout time.		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

r1927[0...2]	Identified rotor resistance / R_rotor ident		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$-[0 h m]$	$-[o h m]$	$-[o h m]$
Description:	Displays identified rotor resistance (on separately excited synchronous motors: damping resistance).		
Index:	$[0]=$ Phase U		
	$[1]=$ Phase V		
	$[2]=$ Phase W		

p1959[0...n]	Rotating measurement configuration / Rot meas config		
	Access level: 3	Calculated: p0340 = 1	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
Description:	-	-	00011110 bin

1.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	01	Saturation characteristic identification	Yes	No	-
	02	Moment of inertia identification	Yes	No	-
	03	Re-calculates the speed controller parameters	Yes	No	-
	04	Speed controller optimization (vibration test)	Yes	No	-
Note:					
	The following parameters are influenced for the individual optimization steps: Bit 01: p0320, p0360, p0362 ... p0369				
	Bit 02: p0341, p0342				
	Bit 03: p1400.0, p1458, p1459, p1463, p1470, p1472, p1496				
	Bit 04: Dependent on p1960				
	p1960 = 1, 3: p1400.0, p1458, p1459, p1470, p1472, p1496				

p1960

Rotating measurement selection / Rot meas sel

Access level: 3
Can be changed: T
Units group: -
Min
0

Calculated: -
Scaling: -
Unit selection: -
Max
3

Data type: Integer16
Dyn. index: -
Func. diagram: -
Factory setting
0

Description: Sets the rotating measurement.
The rotating measurement is carried out after the next power-on command.
The setting possibilities of the parameter depend on the open-loop/closed-loop control mode (p1300).
p1300 < 20 (U/f open-loop control):
It is not possible to select rotating measurement or speed controller optimization.
p1300 = 20, 22 (encoderless operation):
Only rotating measurement or speed controller optimization can be selected in the encoderless mode.
Value:
ndency:

Danger: For drives with a mechanical system that limits the distance moved, it must be ensured that this is not reached during the rotating measurement. If this is not the case, then it is not permissible that the measurement is carried out.

Notice:
If there is a motor holding brake, it must be open (p1215 = 2).
To permanently accept the determined settings they must be saved in a non-volatile fashion (p0971).
During the rotating measurement it is not possible to save the parameter (p0971).
Note: \quad When the rotating measurement is activated, it is not possible to save the parameters (p0971).
Parameter changes are automatically made for the rotating measurement (e.g. p1120); this is the reason that up to the end of the measurement, and if no faults are present, no manual changes should be made.
The ramp-up and ramp-down times (p1120, p1121) are limited, for the rotating measurement, to 900 s .

p1961	Saturation characteristic speed to determine / Sat_char \mathbf{n} determ		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	$75[\%]$	Factory setting
	$26[\%]$	40 [\%]	
Description:	Sets the speed to determine the saturation characteristic.		
	The percentage value is referred to p0310 (rated motor frequency).		
Dependency:	Refer to: p0310, p1959		
Note:	The saturation characteristics should be determined at an operating point with the lowest possible load.		

p1965	Speed_ctrl_opt speed / n_opt speed		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [\%]	75 [\%]	40 [\%]
Description:	Sets the speed for the identification of the moment of inertia and the vibration test.		
	Induction motor:		
	The percentage value is referred to p0310 (rated motor frequency).		
	Synchronous motor:		
	The percentage value is referred to the minimum from p0310 (rated motor frequency) and p1082 (maximum speed).		
Dependency:	Refer to: p0310, p1959		
Note:	In order to calculate the inertia, sudden speed changes are carried out - the specified value corresponds to the lower speed setpoint. This value is increased by 20% for the upper speed value.		
	The q leakage inductance (refer to p1959.5) is determined at zero speed and at 50% of p 1965 - however, with a maximum output frequency of 15 Hz and at a minimum of 10% of the rated motor speed.		
p1967	Speed_ctrl_opt dynamic factor / n_opt dyn_factor		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1 [\%]	400 [\%]	100 [\%]
Description:	Sets the dynamic response factor for speed controller optimization.		
Dependency:	Refer to: p1959		
Note:	For a rotating measurement, this parameter can be used to optimize the speed controller.		
	p1967 = 100%--> speed controller optimization according to a symmetric optimum.		
	p1967 > 100 \% --> optimization with a higher dynamic response (Kp higher, Tn lower).		
r1968	Speed_ctrl_opt dynamic factor actual / n_opt dyn_fact act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the dynamic factor which is actually achieved for the vibration test		
Dependency:	Refer to: p1959, p1967		
Note:	This dynamic factor only refers to the control mode of the speed controller set in p1960.		
r1969	Speed_ctrl_opt moment of inertia determined / n_opt M_inert det		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: 25_1	Unit selection: p0100	Func. diagram: -
	Min	Max	Factory setting
	- [kgm^{2}]	- [kgm ${ }^{2}$]	- [kgm^{2}]
Description:	Displays the determined moment of inertia of the drive.		
	After it has been determined, the value is transferred to p0341, p0342.		
Dependency:	IEC drives ($\mathrm{p} 0100=0$) : unit $\mathrm{kg} \mathrm{m}{ }^{\wedge} 2$		
	NEMA drives (p0100 = 1): unit lb ft^2		
	Refer to: p0341, p0342, p1959		

r1987	PoIID trigger characteristic / PollD trig_char		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the trigger characteristic of the pole position identification routine.		
	The values for the characteristic of the last pole position identification routine are output every 1 ms in order to record signals (e.g. trace).		
	The values for trigger characteristic and saturation characteristic are always output in synchronism from a time perspective.		
Dependency:	Refer to: r1984, r1985		
Note:	Polld: Pole position identification		
	The following information and data can be taken from the trigger characteristic.		
	- the value -100\% marks the angle at the start of the measurement.		
	- the value $+100 \%$ marks the commutation angle determined from the pole position identification routine.		
p1999[0...n]	Ang. commutation offset calibr. and PolID scaling / Com_ang_offs scal		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: MDS, p0130
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [\%]	5000 [\%]	100 [\%]
Description:	Sets the scaling for the runtime of the pole position identification technique in which the current is injected.		
Dependency:	Refer to: p0341, p0342		
Caution:	For p1999 > 100% (setting large moments of inertia) the following applies:		
1	There is no locked rotor monitoring (F07970 fault value 2).		
Note:	For high moments of inertia, it is practical to scale the runtime of the calibration higher.		
p2000	Reference speed reference frequency / n_ref f_ref		
	Access level: 2	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	6.00 [rpm]	210000.00 [rpm]	1500.00 [rpm]
Description:	Sets the reference quantity for speed and frequency.		
	All speeds or frequencies specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
	The following applies: Reference frequency (in Hz) $=$ reference speed (in ((rpm)/60) \times pole pair number)		
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 $=1$.		
	Refer to: p2001, p2002, p2003, r2004, r3996		
Notice:	When the reference speed / reference frequency is changed, short-term communication interruptions may occur.		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	Example 1:		
	The signal of an analog input (e.g. r0755[0]) is connected to a speed setpoint (e.g. p1070[0]). The actual percentage input value is cyclically converted into the absolute speed setpoint using the reference speed (p 2000).		
	Example 2:		
	The setpoint from PROFIBUS (r2050[1]) is connected to a speed setpoint (e.g. p1070[0]). The actual input value is cyclically converted into a percentage value via the pre-specified scaling 4000 hex. This percentage value is converted to the absolute speed setpoint via reference speed (p2000).		

p2001	Reference voltage / Reference voltage		
	Access level: 3	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	10 [Vrms]	100000 [Vrms]	1000 [Vrms]
Description:	Sets the reference quantity for voltages.		
	All voltages specified as relative value are referred to this reference quantity. This also applies for direct voltage values ($=$ rms value) like the DC-link voltage.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
	Note:		
	This reference quantity also applies to direct voltage values. It is not interpreted as rms value, but as DC voltage value.		
Dependency:	p2001 is only updated during automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning has been carried out first for drive data set zero and as a result overwriting of the parameter has not been blocked by setting p0573= 1.		
	Refer to: r3996		
Notice:	When the reference voltage is changed, short-term communication interruptions may occur.		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	For infeed units, the parameterized device supply voltage (p0210) is pre-assigned as the reference quantity.		
	Example:		
	The actual value of the DC link voltage (r0070) is connected to a test socket (e.g. p0771[0]). The actual voltage value is cyclically converted into a percentage of the reference voltage (p2001) and output according to the parameterized scaling.		
p2002	Reference current / I_ref		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.10 [Arms]	100000.00 [Arms]	100.00 [Arms]
Description:	Sets the reference quantity for currents.		
	All currents specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	This parameter is only updated during the automatic calculation ($\mathrm{p} 0340=1, \mathrm{p} 3900>0$) if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 $=1$.		
	Refer to: r3996		
Notice:	If various DDS are used with different motor data, then the reference quantities remain the same as these are not changed over with the DDS. The resulting conversion factor must be taken into account.		
	Example:		
	p2002 $=100 \mathrm{~A}$		
	Reference quantity 100 A corresponds to 100%		
	p0305[0] = 100 A		
	Rated motor current 100 A for MDSO in DDSO --> 100% corresponds to 100% of the rated motor current p0305[1] = 50 A		
	Rated motor current 50 A for MDS1 in DDS1 --> 100% corresponds to 200% of the rated motor current When the reference current is changed, short-term communication interruptions may occur.		
Note:	Preassigned value is p0640.		
	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	For infeed units, the rated line current, which is obtained from the rated power and parameterized rated line supply voltage ($\mathrm{p} 2002=\mathrm{r0206} / \mathrm{p} 0210 / 1.73$) is pre-assigned as the reference quantity.		

Example:

The actual value of a phase current (r0069[0]) is connected to a test socket (e.g. p0771[0]). The actual current value is cyclically converted into a percentage of the reference current (p2002) and output according to the parameterized scaling.

r2004	Reference power / P_ref		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: 14_10	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	- [kW]	- [kW]	- [kW]
Description:	Displays the reference quantity for power.		
	All power ratings specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		
Dependency:	This value is calculated as follows:		
	Infeed: Calculated from voltage times current.		
	Closed-loop control: Calculated from torque times speed.		
	Refer to: p2000, p2001, p2002, p2003		
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.		
	The reference power is calculated as follows:		
	- 2 * Pi * reference speed/ 60 * reference torque (motor)		
	- reference voltage * reference current * root(3) (infeed)		

p2005	Reference angle	angle	
	Access level: 4	Calculated: $\mathrm{p} 0340=1$	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	90.00 [${ }^{\circ}$]	$180.00\left[^{\circ}\right]$	$\left.90.00{ }^{[}{ }^{\circ}\right]$
Description:	Sets the reference quantity for angle.		
	All angles specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100\% or 4000 hex (word) or 40000000 hex (double word).		

1.2 List of parameters

Dependency:	This parameter is only updated during the automatic calculation $(p 0340=1, p 3900>0)$ if motor commissioning was carried out beforehand for drive data set zero. This means that the parameter is not locked against overwriting using p0573 $=1$.
Note:	If a BICO interconnection is established between different physical quantities, then the particular reference quantities are used as internal conversion factor.

p2006	Reference temp / Ref temp		
	Access level: 3	Calculated: p0340 = 1	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	$50.00\left[{ }^{\circ} \mathrm{C}\right]$	$300.00\left[{ }^{\circ} \mathrm{C}\right]$	$100.00\left[{ }^{\circ} \mathrm{C}\right]$
Description:	Sets the reference quantity for temperature.		
	All temperatures specified as relative value are referred to this reference quantity.		
	The reference quantity corresponds to 100% or 4000 hex (word) or 40000000 hex (double word).		

$$
\text { p2007 = p2000 / } 1 \text { [s] }
$$

p2010	Comm IF baud rate / Comm baud		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	4	12	12
Description:	Sets the baud rate for the commissioning interface (USS, RS232).		
Value:	4: 2400 baud		
	$\begin{array}{ll} 5: & 4800 \text { baud } \\ 6: & 9600 \text { baud } \end{array}$		
	7: 19200 baud		
	8: 38400 baud		
	9: 57600 baud		
	10: 76800 baud		
	11: 93750 baud		
	12: 115200 baud		
Note:	COMM-IF: Commissioning interface		
	The parameter is not influenced by setting the factory setting.		

1.2 List of parameters

Notice:	For p0014 = 1, the following applies:		
	After the value has b Modifications can be For p0014 = 0, the fo Before a changed se this, set p0971 = 1 or	further parameter $\mathrm{n} 3996=0$. rmanently effective	e made and the status M to ROM data sav
Note:	Fieldbus IF: Fieldbus interface		
	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	The parameter is set to the factory setting when the protocol is reselected.		
	When p2030 = 1 (USS), the following applies:		
	Min./max./factory setting: 4/13/8		
	When p2030 $=2$ (MODBUS), the following applies:		
	Min./max./factory setting: 5/13/7		
p2021	Field bus interface address / Field bus address		
CU_G110M_USS	Access level: 2	Calculated: -	Data type: Unsign
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	247	0
Description:	Displays or sets the address for the fieldbus interface (RS485).		
	The address can be set as follows:		
	1) Using the address switch on the Control Unit.		
	--> p2021 displays the address setting.		
	--> A change only becomes effective after a POWER ON.		
	2) Using p2021		
	--> Only if an address of 0 or an address which is invalid for the fieldbus selected in p2030 has been set using the address switch.		
	--> The address is saved in a non-volatile fashion using the function "copy from RAM to ROM".		
	--> A change only becomes effective after a POWER ON.		
Dependency:	Refer to: p2030		
Notice:	For p0014 = 1, the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
	For p0014 = 0, the following applies:		
	Before a changed setting becomes permanently effective, a non-volatile RAM to ROM data save is required. To do this, set p0971 = 1 or p0014 $=1$.		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
	The parameter is set to the factory setting when the protocol is reselected.		
	When p2030 = 1 (USS), the following applies:		
	Min./max./factory setting: 0/30/0		
	When p2030 $=2$ (MODBUS), the following applies:		
	Min./max./factory setting: 1/247/1		
p2022	Field bus int USS PZD no. / Field bus USS PZD		
CU_G110M_USS	Access level: 2	Calculated: -	Data type: Unsign
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	8	2
Description:	Sets the number of 16-bit words in the PZD part of the USS telegram for the field bus interface.		
Dependency:	Refer to: p2030		
Note:	The parameter is not influenced by setting the factory setting.		

p2030	Field bus int protocol selection / Field bus protocol		
CU_G110M_DP	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	3	3
Description:	Sets the communication protocol for the field bus interface.		
Value:	0: No protocol 3: PROFIBUS		
Notice:	For p0014 = 1, the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p2030	Field bus int protocol selection / Field bus protocol		
CU_G110M_PN	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	10	7
Description:Value:	Sets the communication protocol for the field bus interface.		
	0: No protocol 7: PROFINET 10: Ethernet/IP		
Notice:	For p0014 = 1, the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p2030	Field bus int protocol selection / Field bus protocol		
CU_G110M_USS	Access level: 1	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	2	0
Description:	Sets the communication protocol for the field bus interface.		
Value:	0: No protocol 1: USS 2: MODBUS		
Notice:	For p0014 = 1, the following applies:		
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996 Modifications can be made again when $\mathrm{r} 3996=0$.		
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
r2032	Master control control word effective / PcCtrl STW eff		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the effective	(STW1) of the drive	

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON/OFF1	Yes	No	-
	01	OC / OFF2	Yes	No	-
	02	OC / OFF3	Yes	No	-
	03	Operation enable	Yes	No	-
	04	Ramp-function generator enable	Yes	No	-
	05	Start ramp-function generator	Yes	No	-
	06	Speed setpoint enable	Yes	No	-
	07	Acknowledge fault	Yes	No	-
	08	Jog bit 0	Yes	No	3030
	09	Jog bit 1	Yes	No	3030
	10	Master ctrl by PLC	Yes	No	-
Notice:	The master control only influences control word 1 and speed setpoint 1 . Other control words/setpoints can be transferred from another automation device.				
Note:	OC: Operating condition				
p2037	PROFIdrive STW1.10 = 0 mode / PD STW1.10=0				
CU_G110M_DP	Access level: 3		Calculated: -	Data type: In	
CU_G110M_PN	Can be changed: T		Scaling: -	Dyn. index:	
	Units group: -		Unit selection: -	Func. diagra	
	Min		Max	Factory sett	
	0		2	0	
Description:	Sets the processing mode for PROFIdrive STW1.10 "master control by PLC".				
	Generally, control world 1 is received with the first receive word (PZD1) (this is in conformance to the PROFIdrive profile). The behavior of STW1.10 = 0 corresponds to that of the PROFIdrive profile. For other applications that deviate from this, the behavior can be adapted using this particular parameter.				
Value:	0: Freeze setpoints and continue to process sign-of-life 1: Freeze setpoints and sign-of-life 2: Do not freeze setpoints				
Recommend.:	Do not change the setting p2037 $=0$.				
Note:	If the STW1 is not transferred according to the PROFIdrive with PZD1 (with bit 10 "master control by PLC"), then p2037 should be set to 2 .				
p2038	PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode				
CU_G110M_DP	Access level: 3		Calculated: -	Data type: Integer16	
CU_G110M_PN	Can be changed: T		Scaling: -	Dyn. index:	
	Units group: -		Unit selection: -	Func. diagra	
	Min		Max	Factory sett	
	0		2	0	
Description:	Sets the interface mode of the PROFIdrive control words and status words.				
	When selecting a telegram via p0922 (p2079), this parameter influences the device-specific assignment of the bits the control and status words.				
Value:	2 : VIK-NAMUR				
Dependency:	Refer to: p0922, p2079				
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.				
Note:	- For p0922 $(\mathrm{p} 2079)=1,350 \ldots 999, \mathrm{p} 2038$ is automatically set to 0 .				
	- For p0922 (p2079) = 20, p2038 is automatically set to 2 .				
	It is not then possible to change p2038.				

1.2 List of parameters

p2039	Select debug monitor interface / Debug monit select			
	Access level: 4	Calculated: -	Data type:	
	Can be changed: U, T	Scaling: -	Dyn. index	
	Units group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory set	
	0	3	0	
Description:	The serial interface for the debug monitor is COM1 (commissioning interface, RS232) or COM2 (fieldbus interface, RS485).			
	Value = 0: De-activated			
	Value $=1$: COM1, commissioning protocol is de-activated			
	Value $=2:$ COM2, field bus is de-activated			
	Value $=3$: Reserved			
Note:	Value $=2$ is only possible for Control Units with RS485 as a field bus interface.			
p2040	Fieldbus interface monitoring time / Fieldbus t_monit			
CU_G110M_PN	Access level: 3	Calculated: -	Data type:	
CU_G110M_USS	Can be changed: U, T	Scaling: -	Dyn. index:	
	Units group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory set	
	0 [ms]	1999999 [ms]	100 [ms]	
Description:	Sets the monitoring time to monitor the process data received via the fieldbus interface. If no process data is received within this time, then an appropriate message is output.			
Note:	0 : The monitoring is de-activated.			
$\overline{\text { p2042 }}$ CU_G110M_DP	PROFIBUS Ident Number / PB Ident No.			
	Access level: 3	Calculated: -	Data type:	
	Can be changed: T	Scaling: -	Dyn. index	
	Units group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory set	
	0	1	0	
Description:	Sets the PROFIBUS Ident Number (PNO-ID).			
	SINAMICS can be operated with various identities on PROFIBUS. This allows the use of a PROFIBUS GSD that is independent of the device (e.g. PROFIdrive VIK-NAMUR with Ident Number 3AAO hex).			
Value:	0: \quad SINAMICS 1: VIK-NAMUR			
Notice:	For p0014 = 1, the following applies:			
	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when $\mathrm{r} 3996=0$.			
Note:	Every change only becomes effective after a POWER ON.			
$\begin{aligned} & \hline \mathbf{r 2 0 4 3 . 0} . .2 \\ & \text { CU_G110M_DP } \\ & \text { CU_G110M_PN } \end{aligned}$	BO: PROFIdrive PZD state / PD PZD state			
	Access level: 3	Calculated: -	Data type:	
	Can be changed: -	Scaling: -	Dyn. index	
	Units group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory set	
	-	-	-	
Description:	Displays the PROFIdrive PZD state.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Setpoint failure	Yes	No	-
	02 Fieldbus oper	Yes	No	-
Dependency:	Refer to: p2044			
Note:	When using the "setpoint failure" signal, the bus can be monitored and an application-specific response triggered when the setpoint fails.			

p2044	PROFldrive fault delay / PD fault delay		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: FloatingPoint32
CU_G110M_PN	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2410
	Min	Max	Factory setting
	0 [s]	100 [s]	0 [s]
Description:	Sets the delay time to initiate fault F01910 after a setpoint failure.		
	The time until the fault is initiated can be used by the application. This means that is is possible to respond to the failure while the drive is still operational (e.g. emergency retraction).		
Dependency:	Refer to: r2043		
p2047	PROFIBUS additional monitoring time / PB suppl t_monit		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2410
	Min		Factory setting
	0 [ms]	20000 [ms]	0 [ms]
Description:	Sets the additional monitoring time to monitor the process data received via PROFIBUS.		
	The additional monitoring time enables short bus faults to be compensated.		
	If no process data is received within this time, then an appropriate message is output.		
Note:	For controller STOP, the additional monitoring time is not effective.		
r2050[0..11]	CO: PROFIBUS PZD receive word / PZD recv word		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: -	Scaling: 4000H	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Connector output to interconnect PZD (setpoints) with word format received from the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
p2051[0...13]	CI: PROFIdrive PZD send word / PZD send word		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Integer16
CU_G110M_PN	Can be changed: U, T	Scaling: 4000H	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-		[0] 2089[0]
			[1] 63[0]
			[2...13] 0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		

1.2 List of parameters

p2051[0...13]	CI: PROFIdrive PZD send word / PZD send word		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Integer16
	Can be changed: U, T	Scaling: 4000H	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Selects the PZD (actual values) with word format to be sent to the fieldbus controller.		
Index:	[0] = PZD 1		
	$\text { [1] = PZD } 2$		
	$\text { [2] = PZD } 3$		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
	[8] = PZD 9		
	[9] = PZD 10		
	[10] = PZD 11		
	[11] = PZD 12		
	[12] = PZD 13		
	[13] = PZD 14		
Notice:	The parameter may be pros	result of p0922 or	be changed.

r2053[0...13] PROFIdrive diagnostics send PZD word / Diag send word

Access level: 3
Can be changed: -
Units group: -
Min

Displays the PZD (actual values) with word format sent to the fieldbus controller.
Description:
[0] = PZD 1
[1] = PZD 2
[2] = PZD 3
[3] = PZD 4
[4] = PZD 5
[5] = PZD 6
[6] = PZD 7
[7] = PZD 8
[8] = PZD 9
[9] = PZD 10
[10] = PZD 11
[11] = PZD 12
[12] = PZD 13
[13] = PZD 14
Bit field:

Calculated: -
Data type: Unsigned16
Scaling: -
Unit selection: - Func. diagram:
Max
-
Factory setting

Bit Signal name

1 signal

ON
00 Bit 0
01 Bit 1
02 Bit 2

0 signal
OFF
OFF
OFF

	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
r2054	PROFIBUS status / PB status				
CU_G110M_DP	Access level: 3		Calculated: -	Data type: Integer16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2410	
	Min		Max	Factory setting	
	0		4	-	
Description: Value:	Status display for the PROFIBUS interface.				
	0: OFF				
	1: No connectio		d rate)		
	2: Connection OK		nd)		
	3: Cyclic conne		(data exchange)		
	4:	Cyclic data OK			
r2055[0...2]	PROFIBUS diagnostics standard / PB diag standard				
CU_G110M_DP	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2410	
	Min		Max	Factory setting	
			-	-	
Description:	Diagnostics display for the PROFIBUS interface.				
Index:	[0] = Master bus address				
	[1] = Master input total length bytes				
	[2] = Master output total length bytes				
r2057	PROFIBUS address switch diagnostics / PB addr_sw diag				
CU_G110M_DP	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2410	
	Min		Max	Factory setting	
	-		-	-	
Description:	Displays the setting of the PROFIBUS address switch "DP ADDRESS" on the Control Unit.				
Dependency:	Refer to: p0918				
r2060[0..10]	CO: PROFIdrive PZD receive double word / PZD recv DW				
	Access level: 3		Calculated: -	Data type: Integer32	
	Can be changed: -		Scaling: 4000H	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2440, 2468	
	Min		Max	Factory setting	
	-		-		
Description:	Connector output to interconnect PZD (setpoints) with double word format received from the fieldbus controller				
Index:	$[0]=$ PZD $1+2$				
	[1] = PZD $2+3$				
	[2] = PZD $3+4$				

1.2 List of parameters

	[3] $=$ PZD $4+5$			
	[4] = PZD $5+6$			
	[5] = PZD $6+7$			
	[6] = PZD $7+8$			
	[7] = PZD $8+9$			
	[8] = PZD $9+10$			
	[9] = PZD $10+11$			
	[10] = PZD $11+12$			
Dependency:	Refer to: r2050			
Notice:	Where there is a multiple interconnection of a connector output, all the connector inputs must either have Integer or FloatingPoint data types.			
	A BICO interconnection for a single PZD can only take place either on r2050 or r2060.			
p2061[0...12]	CI: PROFIBUS PZD send double word / PZD send DW			
	Access level: 3	Calculated: -	Data type: U	
	Can be changed: U, T	Scaling: 4000H	Dyn. index:	
	Units group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory set	
		-	0	
Description:	Selects the PZD (actual values) with double word format to be sent to the fieldbus controller.			
Index:	[0] = PZD $1+2$			
	[1] = PZD $2+3$			
	[2] = PZD $3+4$			
	[3] = PZD $4+5$			
	[4] = PZD $5+6$			
	[5] = PZD $6+7$			
	[6] = PZD $7+8$			
	[7] = PZD $8+9$			
	[8] = PZD $9+10$			
	[9] = PZD $10+11$			
	[10] = PZD $11+12$			
	[11] = PZD $12+13$			
	[12] = PZD $13+14$			
	Refer to: p2051			
Notice:	A BICO interconnection for a single PZD can only take place either on p2051 or p2061.			
	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.			
r2063[0...12]	PROFIdrive diagnostics PZD send double word / Diag send DW			
	Access level: 3	Calculated: -	Data type: U	
	Can be changed: -	Scaling: -	Dyn. index:	
	Units group: -	Unit selection: -	Func. diagr	
	Min	Max	Factory set	
	-	-	-	
Description:	Displays the PZD (actual values) with double word format sent to the fieldbus controller.			
Index:	[0] = PZD $1+2$			
	[1] = PZD $2+3$			
	[2] = PZD $3+4$			
	[3] = PZD $4+5$			
	[4] = PZD $5+6$			
	[5] = PZD $6+7$			
	[6] = PZD $7+8$			
	[7] = PZD $8+9$			
	[8] = PZD $9+10$			
	[9] = PZD $10+11$			
	[10] = PZD $11+12$			
	[11] = PZD $12+13$			
	[12] = PZD $13+14$			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Bit 0	ON	OFF	-
	01 Bit 1	ON	OFF	-

Notice: A maximum of 4 indices of the "trace" function can be used.

r2067[0..1]	PZD maximum interconnected / PZDmaxIntercon		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Display for the maximum interconnected PZD in the receive/send direction		
	Index 0: receive (r2050, r2060)		
	Index 1: send (p2051, p2061)		
p2079	PROFIdrive PZD telegram selection extended / PZD telegr ext		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: Integer16
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	999	1
Description:	Sets the send and receive telegram.		
	Contrary to p0922, a telegram can be selected using p2079 and subsequently expanded.		
Value:	1: Standard telegram 1, PZD-2/2		
	20: Standard tel		
	350: SIEMENS te		
	352: SIEMENS tel	-6/6	
	353: SIEMENS tel	-2/2, PKW-4/4	
	354: SIEMENS tel	-6/6, PKW-4/4	
	999: Free telegram	with BICO	
Dependency:	Refer to: p0922		

1.2 List of parameters

Note:

For p0922 < 999 the following applies:
p2079 has the same value and is inhibited. All of the interconnections and extensions contained in the telegram are inhibited.
For p0922 = 999 the following applies:
p2079 can be freely set. If p2079 is also set to 999, then all of the interconnections can be set.
For p0922 = 999 and p2079 < 999 the following applies:
The interconnections contained in the telegram are inhibited. However, the telegram can be extended.

p2080[0...15]	BI: Binector-connector converter status word 1 / Bin/con ZSW1		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	[0] 899.0
			[1] 899.1
			[2] 899.2
			[3] 2139.3
			[4] 899.4
			[5] 899.5
			[6] 899.6
			[7] 2139.7
			[8] 2197.7
			[9] 899.9
			[10] 2199.1
			[11] 1407.7
			[12] 899.12
			[13] 2135.14
			[14] 2197.3
			[15] 2135.15
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form status word 1.		
Index:	$[0]=\text { Bit } 0$		
	$[1]=\text { Bit } 1$		
	$\text { [2] = Bit } 2$		
	$[3]=\text { Bit } 3$		
	[4] = Bit 4		
	[5] $=$ Bit 5		
	[6] = Bit 6		
	$[7]=\text { Bit } 7$		
	[8] = Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p2080[0...15]	BI: Binector-connector converter status word 1 / Bin/con ZSW1		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form status word 1.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] $=$ Bit 4		
	[5] $=$ Bit 5		
	[6] = Bit 6		
	[7] = Bit 7		
	[8] $=$ Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2081[0...15]	BI: Binector-connector converter status word 2 / Bin/con ZSW2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form status word 2.		
Index:	[0] = Bit 0		
	[1] = Bit 1		
	[2] = Bit 2		
	[3] = Bit 3		
	[4] = Bit 4		
	[5] $=$ Bit 5		
	[6] = Bit 6		
	[7] = Bit 7		
	[8] $=$ Bit 8		
	[9] = Bit 9		
	[10] = Bit 10		
	[11] = Bit 11		
	[12] = Bit 12		
	[13] = Bit 13		
	[14] = Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		

p2082[0...15]	BI: Binector-connector converter status word 3 / Bin/con ZSW3		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form free status word 3 .		
Index:	[0] = Bit 0		
	[1] $=$ Bit 1		
	[2] $=$ Bit 2		
	[3] $=$ Bit 3		
	[4] $=$ Bit 4		
	[5] $=$ Bit 5		
	[6] $=$ Bit 6		
	[7 l = Bit 7		
	[8] $=$ Bit 8		
	[9] $=$ Bit 9		
	[10] $=$ Bit 10		
	$[11]=$ Bit 11		
	[12] $=$ Bit 12		
	[13] $=$ Bit 13		
	[14] $=$ Bit 14		
	[15] $=$ Bit 15		
Dependency:	Refer to: p2088, r2089		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
p2083[0...15]	BI: Binector-connector converter status word 4 / Bin/con ZSW4		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2472
	Min	Max	Factory setting
	-	-	0
Description:	Selects bits to be sent to the PROFIdrive controller.		
	The individual bits are combined to form free status word 4.		
Index:	[0] $=$ Bit 0		
	[1] $=$ Bit 1		
	[2] $=$ Bit 2		
	[3] $=$ Bit 3		
	[4] $=$ Bit 4		
	[5] $=$ Bit 5		
	[6$]=$ Bit 6		
	[7] $=$ Bit 7		
	[8] $=$ Bit 8		
	[9] $=$ Bit 9		
	[10] $=$ Bit 10		
	[11] $=$ Bit 11		
	[12] $=$ Bit 12		
	[13] $=$ Bit 13		
	[14] $=$ Bit 14		
	[15] = Bit 15		
Dependency:	Refer to: p2088, r2089		

$\begin{aligned} & \hline \mathbf{p 2 0 8 8 [0 . . 4]} \\ & \text { CU_G110M_USS } \end{aligned}$	Invert binector-connector converter status word / Bin/con ZSW inv				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: U, T		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2472	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Setting to invert the individual binector inputs of the binector connector converter.				
Index:	[0] [1] [2] [3] [4]	Status word 1 Status word 2 Free status word 3 Free status word 4 Free status word 5			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
	01	Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	Refer to: p2080, p2081, p2082, p2083, r2089				

r2089[0...4]	CO: Send binector-connector converter status word / Bin/con ZSW send				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can	be changed: -	Scaling: -	Dyn. index: -	
	Uni	group: -	Unit selection: -	Func. diagram: 2472	
	Min		Max	Factory setting	
	-		-	-	
Description:	Connector output to interconnect the status words to a PZD send word.				
Index:	[0] [1] [2] [3] [4]	Status word 1 Status word 2 Free status wor Free status wor Free status wor			
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Bit 0	ON	OFF	-
		Bit 1	ON	OFF	-
		Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-

1.2 List of parameters

r2092.0... 15	BO: PROFIdrive PZD3 receive bit-serial / PZD3 recv bitw			
		ess level: 3	Calculated: -	Data type: Unsigned16
		be changed: -	Scaling: -	Dyn. index:-
		group: -	Unit selection: -	Func. diagram: 2468
	Min		Max	Factory setting
	-		-	-
Description:	Binector output for bit-serial interconnection of PZD3 received from the PROFIdrive controller.			
Bit field:	Bit	Signal name	1 signal	0 signal FP
		Bit 0	ON	OFF
		Bit 1	ON	OFF
	02	Bit 2	ON	OFF
	03	Bit 3	ON	OFF
	04	Bit 4	ON	OFF -
	05	Bit 5	ON	OFF
		Bit 6	ON	OFF
		Bit 7	ON	OFF
		Bit 8	ON	OFF
	09	Bit 9	ON	OFF
	10	Bit 10	ON	OFF
		Bit 11	ON	OFF -
		Bit 12	ON	OFF -
		Bit 13	ON	OFF -
		Bit 14	ON	OFF -
		Bit 15	ON	OFF
r2093.0... 15	BO: PROFIdrive PZD4 receive bit-serial / PZD4 recv bitw			
	Access level: 3		Calculated: -	Data type: Unsigned16
	Can be changed: -		Scaling: -	Dyn. index: -
	Units group: -		Unit selection: -	Func. diagram: 2468
	Min		Max	Factory setting
	-			
Description:	Binector output for bit-serial interconnection of PZD4 (normally control word 2) received from the PROFIdrive controller.			
Bit field:	Bit	Signal name	1 signal	0 signal \quad FP
	00	Bit 0	ON	OFF
	01	Bit 1	ON	OFF
	02	Bit 2	ON	OFF
	03	Bit 3	ON	OFF
	04	Bit 4	ON	OFF -
	05	Bit 5	ON	OFF -
	06	Bit 6	ON	OFF -
	07	Bit 7	ON	OFF
	08	Bit 8	ON	OFF
	09	Bit 9	ON	OFF
	10	Bit 10	ON	OFF -
	11	Bit 11	ON	OFF -
	12	Bit 12	ON	OFF
	13	Bit 13	ON	OFF
	14	Bit 14	ON	OFF -
	15	Bit 15	ON	OFF

r2094.0.. 15	BO: Connector-binector converter binector output / Con/bin outp		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2468
	Min	Max	Factory setting
	-	-	-
Description:	Binector output for bit-serial onward interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[0].		
Bit field:	Bit Signal name	1 signal	0 signal FP
	00 Bit 0	ON	OFF
	01 Bit 1	ON	OFF
	02 Bit 2	ON	OFF
	03 Bit 3	ON	OFF
	04 Bit 4	ON	OFF -
	05 Bit 5	ON	OFF -
	06 Bit 6	ON	OFF -
	07 Bit 7	ON	OFF -
	08 Bit 8	ON	OFF -
	09 Bit 9	ON	OFF -
	10 Bit 10	ON	OFF
	11 Bit 11	ON	OFF
	12 Bit 12	ON	OFF
	13 Bit 13	ON	OFF -
	14 Bit 14	ON	OFF -
	15 Bit 15	ON	OFF -
Dependency:	Refer to: p2099		

r2095.0..15	BO: Connector-binector converter binector output / Con/bin outp				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2468	
	Min		Max	Factory setting	
	-		-	-	
Description:	Binector output for bit-serial interconnection of a PZD word received from the PROFIdrive controller. The PZD is selected via p2099[1].				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	ON	OFF	-
	01	Bit 1	ON	OFF	-
	02	Bit 2	ON	OFF	-
	03	Bit 3	ON	OFF	-
	04	Bit 4	ON	OFF	-
	05	Bit 5	ON	OFF	-
	06	Bit 6	ON	OFF	-
	07	Bit 7	ON	OFF	-
	08	Bit 8	ON	OFF	-
	09	Bit 9	ON	OFF	-
	10	Bit 10	ON	OFF	-
	11	Bit 11	ON	OFF	-
	12	Bit 12	ON	OFF	-
	13	Bit 13	ON	OFF	-
	14	Bit 14	ON	OFF	-
	15	Bit 15	ON	OFF	-
Dependency:	Refer to: p2099				

p2098[0..1]	Inverter connector-binector converter binector output / Con/bin outp inv				
				Data type: Unsigned16	
	Can be changed: U, T		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 2468	
	Min		Max	Factory setting	
	-		-	0000000000000000 bin	
Description:	Setting to invert the individual binector outputs of the connector-binector converter. Using p2098[0], the signals of CI: p2099[0] are influenced. Using p2098[1], the signals of CI: p2099[1] are influenced.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Bit 0	Inverted	Not inverted	-
		Bit 1	Inverted	Not inverted	-
	02	Bit 2	Inverted	Not inverted	-
	03	Bit 3	Inverted	Not inverted	-
	04	Bit 4	Inverted	Not inverted	-
	05	Bit 5	Inverted	Not inverted	-
	06	Bit 6	Inverted	Not inverted	-
	07	Bit 7	Inverted	Not inverted	-
	08	Bit 8	Inverted	Not inverted	-
	09	Bit 9	Inverted	Not inverted	-
	10	Bit 10	Inverted	Not inverted	-
	11	Bit 11	Inverted	Not inverted	-
	12	Bit 12	Inverted	Not inverted	-
	13	Bit 13	Inverted	Not inverted	-
	14	Bit 14	Inverted	Not inverted	-
	15	Bit 15	Inverted	Not inverted	-
Dependency:	Refer to: r2094, r2095, p2099				

p2099[0...1]	CI: Connector-binector converter signal source / Con/bin S_src		
	Access level: 3	Calculated: -	Data type: U32 / Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2468
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the connector-binector converter.		
	A PZD receive word can be selected as signal source. The signals are available to be serially passed-on (interconnection).		
Dependency:	Refer to: r2094, r2095		
Note:	From the signal source set via the connector input, the corresponding lower 16 bits are converted. p2099[0...1] together with r2094.0... 15 and r2095.0... 15 forms two connector-binector converters: Connector input p2099[0] to binector output in r2094.0... 15		

p2100[0..19]	Setting the fault number for fault response / F_no F response		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8075
	Min	Max	Factory setting
	0	65535	0
Description:	Selects the faults for which the fault response should be changed		
Dependency:	The fault is selected and the required response is set under the same index.		
	Refer to: p2101		
Notice:	For the following cases, it is not possible to re-parameterize the fault response to a fault: - if there is no existing fault number. - the message type is not "fault" (F).		

Note: \quad Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.

p2101[0...19]	Setting the fault response / Fault response		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8075
	Min	Max	Factory setting
	0	6	0
Description:	Sets the fault response for the selected fault.		
Value:	0: NONE		
	1: OFF1		
	2: OFF2		
	3: OFF3		
	5: STOP2		
	6: Internal armature short-circuit / DC braking		
Dependency:	The fault is selected and the required response is set under the same index.		
	Refer to: p2100		
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.		
	The fault response can only be changed for faults with the appropriate identification.		
	Example:		
	F12345 and fault response = NONE (OFF1, OFF2)		
	--> The fault response NONE can be changed to OFF1 or OFF2.		
	Re value = 1 (OFF1):		
	Braking along the ramp-function generator down ramp followed by a pulse inhibit.		
	Re value $=2$ (OFF2):		
	Internal/external pulse inhibit.		
	Re value = 3 (OFF3):		
	Braking along the OFF3 down ramp followed by a pulse inhibit.		
	Re value $=5$ (STOP2):		
	n_set = 0		
	Re value $=6$ (armature short-circuit, internal/DC braking):		
	This value can only be set for all drive data sets when p1231 $=4$.		
	a) DC braking is not possible for synchronous motors.		
	b) DC braking is possible for induction motors.		

p2103[0...n]	BI: 1. Acknowledge faults / 1. Acknowledge		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2441, 2442, 2443, 2447, 2475, 2546, 9220, 9677, 9678
	Min	Max	Factory setting
	-	-	[0] 2090.7
			[1] 722.2
			[2] 2090.7
			[3] 2090.7
Description:	Sets the first signal source to acknowledge faults.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		

p2103[0...n]	BI: 1. Acknowledge faults / 1. Acknowledge		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2441, 2442, 2443, 2447, 2475, 2546, 9220, 9677, 9678
	Min	Max	Factory setting
	-	-	[0] 722.2
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the first signal source to acknowledge faults.		
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546, 8060
	Min	Max	Factory setting
	-	-	[0] 722.2
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the second signal source to acknowledge faults.		
Note:	A fault acknowledgement is triggered with a 0/1 signal.		
p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546, 8060
	Min	Max	Factory setting
		-	0
Description:	Sets the second signal source to acknowledge faults.		
Note:	A fault acknowledgement is triggered with a $0 / 1$ signal.		
p2105[0...n]	BI: 3. Acknowledge faults / 3. Acknowledge		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546, 8060
	Min	Max	Factory setting
	-	-	0
Description:	Sets the third signal source to acknowledge faults.		
Note:	A fault acknowledgement is triggered with a 0/1 signal.		
p2106[0...n]	BI: External fault 1 / External fault 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external fault 1.		
Note:	An external fault is triggered with a $1 / 0$ signal.		

p2107[0...n]	BI: External fault 2 / External fault 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external fault 2.		
Note:	An external fault is triggered with a $1 / 0$ signal.		
p2108[0...n]	BI: External fault 3 / External fault 3		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external fault 3.		
	External fault 3 is initiated by the following AND logic operation:		
	- BI: p2108 negated		
	- BI: p3111		
	- BI: p3112 negated		
Dependency:	Refer to: p3110, p3111, p3112		
Note:	An external fault is triggered with a $1 / 0$ signal.		
r2109[0...63]	Fault time removed in milliseconds / t_flt resolved ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8060
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the fault was removed.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2130, r2133, r2136		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the fault buffer and the assignment of the indices is shown in r0945.		
r2110[0...63]	Alarm number / Alarm number		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8065
	Min	Max	Factory setting
	-	-	-
Description:	This parameter is identical to r2122.		
p2111	Alarm counter / Alarm counter		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8065
	Min	Max	Factory setting
	0	65535	0
Description:	Number of alarms that have occurred after the last reset.		

1.2 List of parameters

Dependency:	When p2111 is set to 0 , the following is initiated: - all of the alarms of the alarm buffer that have gone [0...7] are transferred into the alarm history [8...63] - the alarm buffer [0...7] is deleted. Refer to: r2110, r2122, r2123, r2124, r2125		
Note:			
p2112[0...n]	BI: External alarm 1 / External alarm 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external alarm 1.		
Note:	An external alarm is triggered with a $1 / 0$ signal.		
r2114[0...1]	System runtime total / Sys runtime tot		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the total system runtime for the drive unit.		
	The time comprises r2114[0] (milliseconds) and r2114[1] (days).		
Index:	$\begin{aligned} & {[0]=\text { Milliseconds }} \\ & {[1]=\text { Days }} \end{aligned}$		
Dependency:	Refer to: r0948, r2109, r2123, r2125, r2130, r2136, r2145, r2146		
Note:	When the electronic power supply is switched out, the counter values are saved.		
	After the drive unit is powered up, the counter continues to run with the last value that was saved.		
p2116[0...n]	BI: External alarm 2 / External alarm 2		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
		-	1
Description:	Sets the signal source for external alarm 2.		
Note:	An external alarm is triggered with a $1 / 0$ signal.		
p2117[0...n]	BI: External alarm 3 / External alarm 3		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 2546
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for external alarm 3.		
Note:	An external alarm is triggered with a $1 / 0$ signal.		

r2120	CO: Sum of fault and alarm buffer changes / Sum buffer changed		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8065
	Min	-	Factory setting
	-	-	
Description:	Displays the sum of all of the fault and alarm buffer changes in the drive unit.		
Dependency:	Refer to: r0944, r2121		

r2121	CO: Counter alarm buffer changes / Alrm buff changed		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8065
	Min	Max	Factory setting
	-	-	
Description:	This counter is incremented every time the alarm buffer changes.		
Dependency:	Refer to: $\mathrm{r} 2110, \mathrm{r} 2122, \mathrm{r} 2123, \mathrm{r} 2124, \mathrm{r} 2125$		

r2122[0...63]	Alarm code / Al		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8065
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of alarms that have occurred.		
Dependency:	Refer to: r2110, r2123, r2124, r2125, r2134, r2145, r2146		
Notice:	The properties of the alarm buffer should be taken from the corresponding product documentation.		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	Alarm buffer structure (general principle):		
	r2122[0], r2124[0], r2123[0], r2125[0] --> alarm 1 (the oldest)		
	r2122[7], r2124[7], r2123[7], r2125[7] --> Alarm 8 (the latest)		
	When the alarm buffer is full, the alarms that have gone are entered into the alarm history:		
	r2122[8], r2124[8], r2123[8], r2125[8] --> Alarm 1 (the latest)		
	. $\mathrm{r} 2122[63]$, r2124[63],	[63] --> alarm 56 (t	

r2123[0...63]	Alarm time rece	econds / t_al	
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8065
	Min	Max	Factory setting
	- [ms]	- [ms]	- [ms]
Description:	Displays the system runtime in milliseconds when the alarm occurred.		
Dependency:	Refer to: r2110, r2122, r2124, r2125, r2134, r2145, r2146		
Notice:	The time comprises r2145 (days) and r2123 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		

r2124[0...63]	Alarm value / A		
	Access level: 3	Calculated: -	Data type: Integer32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750, 8065
	Min	Max	Factory setting
	-	-	-
Description:	Displays additional information about the active alarm (as integer number).		
Dependency:	Refer to: r2110, r2122, r2123, r2125, r2134, r2145, r2146		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
	The structure of the alarm buffer and the assignment of the indices is shown in r2122.		

r2125[0...63]	Alarm time removed in milliseconds /t_alarm res ms		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750,8065
	Min	$-[\mathrm{ms}]$	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	
Description:	Displays the system runtime in milliseconds when the alarm was cleared.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2134, r2145, r2146		
Notice:	The time comprises $r 2146$ (days) and r2125 (milliseconds).		

Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139). The structure of the alarm buffer and the assignment of the indices is shown in r2122.
p2126[0...19]	Setting fault number for acknowledge mode / Fault_no ackn_mode
	Access level: 3 Calculated: - Data type: Unsigned16
	Can be changed: U, T Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: 1750, 8075
	Min Max Factory setting
	0655350
Description:	Selects the faults for which the acknowledge mode is to be changed
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index Refer to: p2127
Notice:	It is not possible to re-parameterize the acknowledge mode of a fault in the following cases: - Fault number does not exist. - Message type is not "fault" (F).
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved.
p2127[0...19]	Sets acknowledgement mode / Acknowledge mode
	Access level: 3 Calculated: - Data type: Integer16
	Can be changed: U, T Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: 1750, 8075
	Min Max Factory setting
	122
Description:	Sets the acknowledge mode for selected fault.
Value:	1: Acknowledgment only using POWER ON 2: Ack IMMEDIATELY after the fault cause has been removed
Dependency:	Selects the faults and sets the required acknowledge mode realized under the same index Refer to: p2126
Notice:	It is not possible to re-parameterize the acknowledge mode of a fault in the following cases: - if there is no existing fault number. - the message type is not "fault" (F).
Note:	Re-parameterization is also possible if a fault is present. The change only becomes effective after the fault has been resolved. The acknowledge mode can only be changed for faults with the appropriate identification. Example: F12345 and acknowledge mode $=$ IMMEDIATELY (POWER ON) --> The acknowledge mode can be changed from IMMEDIATELY to POWER ON.

p2128[0...15]	Selecting fault/alarm code for trigger / Message trigger		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 1750,8070
	Min	Max	Factory setting
	0	05535	
Description:	Selects faults or alarms which can be used as trigger.		
Dependency:	Refer to: 2129		

r2129.0... 15	CO/BO: Trigger word for faults and alarms / Trigger word				
	Access level: 3		Calculated: -	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: 1530, 8070	
	Min		Max	Factory setting	
	-		-	-	
Description:	Trigger signal for the selected faults and alarms				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		Trigger signal p2128[0]	ON	OFF	-
		Trigger signal p2128[1]	ON	OFF	-
	02	Trigger signal p2128[2]	ON	OFF	-
		Trigger signal p2128[3]	ON	OFF	-
		Trigger signal p2128[4]	ON	OFF	-
		Trigger signal p2128[5]	ON	OFF	-
	06	Trigger signal p2128[6]	ON	OFF	-
		Trigger signal p2128[7]	ON	OFF	-
		Trigger signal p2128[8]	ON	OFF	-
		Trigger signal p2128[9]	ON	OFF	-
		Trigger signal p2128[10]	ON	OFF	-
		Trigger signal p2128[11]	ON	OFF	-
		Trigger signal p2128[12]	ON	OFF	-
		Trigger signal p2128[13]	ON	OFF	-
		Trigger signal p2128[14]	ON	OFF	-
		Trigger signal p2128[15]	ON	OFF	-
Dependency:	If one of the faults or alarms selected in p2128[n] occurs, then the particular bit of this binector output is set.				
Note:	CO: r2129 = 0 --> None of the selected messages has occurred.				
	CO: r2129 > 0 --> At least one of the selected messages has occurred.				

r2130[0...63]	Fault time received in days / t_fault recv days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8060
	Min	Max	Factory setting
	-	-	-
Description:	Displays the system runtime in days when the fault occurred.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2133, r2136		
Notice:	The time comprises r2130 (days) and r0948 (milliseconds).		
	The value displayed in p2130 refers to 01.01.1970.		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
r2131	CO: Actual fault code / Actual fault code		
	Access level: 2	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8060
	Min	Max	Factory setting
	-	-	-
Description:	Displays the code of the oldest active fault.		
Dependency:	Refer to: r3131, r3132		
Note:	0 : No fault present.		

r2132	CO: Actual alarm code / Actual alarm code			
	Access level: 2	Calculated: -	Data type: Unsigned16	
	Can be changed: - S	Scaling: -	Dyn. index: -	
	Units group: - U	Unit selection: -	Func. diagram: 8065	
	Min M	Max	Factory setting	
	- -	-	-	
Description:	Displays the code of the last alarm that occurred.			
Note:	0: No alarm present.			
r2133[0...63]	Fault value for float values / Fault val float			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: - U	Unit selection: -	Func. diagram: 8060	
	Min M	Max	Factory setting	
	- -	-	-	
Description:	Displays additional information about the fault that occurred for float values.			
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2136			
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).			
r2134[0...63]	Alarm value for float values / Alarm value float			
	Access level: 3	Calculated: -	Data type: FloatingPoint32	
	Can be changed: - S	Scaling: -	Dyn. index: -	
	Units group: - U	Unit selection: -	Func. diagram: 8065	
	Min	Max	Factory setting	
	-	-	-	
Description:	Displays additional information about the active alarm for float values.			
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2145, r2146			
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).			
r2135.12..15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2			
	Access level: 2	Calculated: -	Data type: Unsigned16	
	Can be changed: - S	Scaling: -	Dyn. index: -	
	Units group: - U	Unit selection: -	Func. diagram: 1530, 2548	
	Min M	Max	Factory setting	
	-		-	
Description:	Displays the second status word of faults and alarms.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	12 Fault motor overtemperature	Yes	No	-
	13 Fault power unit thermal overload	d Yes	No	-
	14 Alarm motor overtemperature	Yes	No	-
	15 Alarm power unit thermal overload	Yes	No	-

r2136[0...63]	Fault time removed in days /t_flt resolv days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8060
	Min	-	Factory setting
	-	-	
Description:	Displays the system runtime in days when the fault was removed.		
Dependency:	Refer to: r0945, r0947, r0948, r0949, r2109, r2130, r2133		
Notice:	The time comprises r2136 (days) and r2109 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

p2140[0...n]	Hysteresis speed 2 / n_hysteresis 2			
	Access level: 3	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010	
	Min	Max	Factory setting	
	$0.00[r p m]$	$300.00[r p m]$	$90.00[\mathrm{rpm}]$	
Description:	Sets the hysteresis speed (bandwidth) for the following signals:			
	"\|n_act	< = speed threshold value 2" (BO: r2197.1)		
	"\|n_act	> speed threshold value 2" (BO: r2197.2)		
Dependency:	Refer to: p2155, r2197			

p2141[0...n]	Speed threshold 1 / n_thresh val 1		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	5.00 [rpm]
Description:	Sets the speed threshold value for the signal "f or n comparison value reached or exceeded" (BO: r2199.1). Refer to: p2142, r2199		
Dependency:			
p2142[0...n]	Hysteresis speed 1 / n_hysteresis 1		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010
	Min	Max	Factory setting
	0.00 [rpm]	300.00 [rpm]	2.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the signal "f or n / v comparison value reached or exceeded" (BO: r2199.1).		
Dependency:	Refer to: p2141, r2199		
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg		
	Access level: 4	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the negated enable ($0=$ enable) of the motor stall monitoring.		
Dependency:	Refer to: p2163, p2164, p2166, r2197, r2198		
Note:	When interconnecting the enable signal with r2197.7 then the stall signal is suppressed if there is no spe actual value deviation.		
r2145[0...63]	Alarm time received in days / t_alarm recv days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8065
	Min	Max	Factory setting
		-	-
Description:	Displays the system runtime in days when the alarm occurred.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2146		
Notice:	The time comprises r2145 (days) and r2123 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		
r2146[0...63]	Alarm time removed in days / t_alarm res days		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 8065
	Min	Max	Factory setting
Description:	Displays the system runtime in days when the alarm was cleared.		
Dependency:	Refer to: r2110, r2122, r2123, r2124, r2125, r2134, r2145		
Notice:	The time comprises r2146 (days) and r2125 (milliseconds).		
Note:	The buffer parameters are cyclically updated in the background (refer to status signal in r2139).		

p2148[0...n]	BI: RFG active / RFG active						
		ss level: 3	Calculated: $\mathrm{p} 0340=1,3,5$		Data type: U32 / Binary		
	Can	be changed: U, T	Scaling: -		Dyn. index: CDS, p0170		
		group: -	Unit selection: -		Func. diagram: 8011		
	Min		Max		Factory setting		
	-		-		0		
Description:	Sets the signal source for the signal "ramp-function generator active" for the following signals/messages:						
Notice:	The parameter may be protected as a result of p0922 or p2079 and cannot be changed.						
Note:	The binector input is automatically interconnected to r1199.2 as a default setting.						
p2149[0...n]	Monitoring configuration / Monit config						
		ss level: 3	Calcula		Data type: Unsigned16		
	Can	be changed: U, T	Scaling		Dyn. index: DDS, p0180		
	Uni	group: -	Unit sel	ion: -	Func. diagram: 8010, 8013		
	Min		Max		Factory setting		
	-		-		00001001 bin		
Description:	Sets the configuration for messages and monitoring functions.						
Bit field:	Bit Signal name			1 signal	0 signal	FP	
	00 Enable alarm A07903			Yes	No	8010	
	01 Load monitoring only in the 1st quadrant			Yes	No	8013	
	03 n_act > p2155 own hysteresis			Yes	No	8010	
	05 Stall monitoring for encoderless speed control			Yes	No 8010		
Dependency:	Refer to: 2197						
Note:	Re bit 00:						
	Alarm A07903 is output when the bit is set with r2197.7 = 0 (n_set <> n_act).						
	Re bit 01:						
	When the bit is set, load monitoring is only carried out in the 1st quadrant as a result of the positive characteristic parameters (p2182 ... p2190).						
	Re bit 03:						
	When the bit is set, r2197 bit 1 and bit 2 are determined via separate hystereses.						
	Re bit 05: only for synchronous motors						
	When this bit is set, a change to open-loop speed controlled operation is only possible when the motor is stationa						
p2150[0...n]	Hysteresis speed 3 / n_hysteresis 3						
	Access level: 3		Calculated: $\mathrm{p} 0340=1,3,5$		Data type: FloatingPoint32		
	Can be changed: U, T		Scaling: -		Dyn. index: DDS, p0180		
	Units group: 3_1		Unit sel	on: p0505	Func. diagram: 8010		
	Min		Max		Factory setting		
	0.00 [rpm]		300.00		2.00 [rpm]		
Description:	Sets the hysteresis speed (bandwidth) for the following signals:						
	"\|n_act	< speed threshold value 3" (BO: r2199.0)					
	"n_set >= 0" (BO: r2198.5)						
	"n_act >= 0" (BO: r2197.3)						
Dependency:	Refer to: p2161, r2197, r2199						

p2151[0...n]	Cl: Speed setpoint for messages/signals / n_set for msg		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: p2000	Dyn. index: CDS, p0170

p2157[0...n]	Speed threshold 5 / n_thresh val 5			
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: 3_1	Unit selection: p0505	Func. diagram: -	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]	
Description:	Sets the speed threshold	following messages:		
	"\|n_act	< = speed thres	(BO: r2198.0)	
	"\|n_act	> speed threshold value 5" (BO: r2198.1)		
Dependency:	Refer to: p2150, p2158			
p2158[0...n]	Delay for n_act comparison with speed threshold value 5/ Del compar n_5			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	0 [ms]	10000 [ms]	10 [ms]	
Description:	Delay time for the comparison of the speed with the speed threshold value 5 (P2157).			
Dependency:	Refer to: p2150, p2157			
p2159[0...n]	Speed threshold 6 / n_thresh val 6			
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: 3_1	Unit selection: p0505	Func. diagram: -	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]	
Description:	Sets the speed threshold value for the following messages: "\|n_act	< = speed threshold value 6" (BO: r2198.2)		
Dependency:	Refer to: p2150, p2160			
p2160[0...n]	Delay for n_act comparison with speed threshold value 6 / Del compar n_6			
	Access level: 3	Calculated: -	Data type: Unsigned16	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	0 [ms]	10000 [ms]	10 [ms]	
Description: Dependency:	Sets the delay time for the comparison of the speed with the speed threshold value 6 (p2159). Refer to: p2150, p2159			
p2161[0...n]	Speed threshold 3/n_thresh val 3			
	Access level: 3	Calculated: p0340 $=1,3,5$	Data type: FloatingPoint32	
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180	
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010	
	Min	Max	Factory setting	
	0.00 [rpm]	210000.00 [rpm]	5.00 [rpm]	
Description: Dependency:	Sets the speed threshold value for the signal "\|n_act	< speed threshold value 3" (BO: r2199.0). Refer to: p2150, r2199		

p2162[0...n]	Hysteresis speed n_act > n_max / Hyst n_act>n_max		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010
	Min	Max	Factory setting
	0.00 [rpm]	60000.00 [rpm]	0.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the signal "n_act > n_max" (BO: r2197.6).		
Dependency:	Refer to: r1084, r1087, r2197		
Notice:	For p0322 = 0, the following applies: p2162 <= 0.1 * p0311		
	For p0322 > 0, the following applies: p2162 <= 1.02 * p0322-p1082		
	If one of the conditions is violated, p2162 is appropriately and automatically reduced when exiting the commissioning mode.		
Note:	For a negative speed limit (r1087) the hysteresis is effective below the limit value and for a positive speed limit (r1084) above the limit value.		
	If significant overshoot occurs in the maximum speed range (e.g. due to load shedding), you are advised to increase the dynamic response of the speed controller (if possible). If this is insufficient, the hysteresis p2162 can only be increased by more than 10% of the rated speed when the maximum speed (p 0322) of the motor is sufficiently greater than the speed limit p1082.		
p2163[0...n]	Speed threshold 4 / n_thresh val 4		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	90.00 [rpm]
Description:	Sets the speed threshold value for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2164, p2166, r2197		
p2164[0...n]	Hysteresis speed 4 / n_hysteresis 4		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8010
	Min	Max	Factory setting
	0.00 [rpm]	200.00 [rpm]	2.00 [rpm]
Description:	Sets the hysteresis speed (bandwidth) for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2166, r2197		
p2166[0...n]	Off delay n_act = n_set / t_del_off n_i=n_so		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8010
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-off delay time for the "speed setpoint - actual value deviation in tolerance t_off" signal/message (BO: r2197.7).		
Dependency:	Refer to: p2163, p2164, r2197		

p2167[0...n]	Switch-on delay n_act = n_set / t_on n_act=n_set		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8010
	Min	Max	Factory setting
	0.0 [ms]	10000.0 [ms]	200.0 [ms]
Description:	Sets the switch-on delay for the "speed setpoint - actual value deviation in tolerance t_on" signal/message (BO: r2199.4).		
r2169	CO: Actual speed smoothed signals / n_act smth message		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: p2000	Dyn. index: -
	Units group: 3_1	Unit selection: p0505	Func. diagram: 1750, 8010, 8012, 8013
			Factory setting
	- [rpm]	- [rpm]	- [rpm]
Description:	Displays the smoothed actual speed for messages/signals.		
Dependency:	Refer to: p2153		
p2170[0...n]	Current threshold value / I_thres		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2002	Dyn. index: DDS, p0180
	Units group: 6_2	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Arms]	10000.00 [Arms]	0.00 [Arms]
Description:	Sets the absolute current threshold for the messages.		
	"I_act < I_threshold p2170" (BO: r2198.8)		
Dependency:	Refer to: p2171		
p2171[0...n]	Current threshold value reached delay time / t_del I_thresh rch		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	10 [ms]
Description: Dependency:	Sets the delay time for the comparison of the current actual value (r0068) with the current threshold value (p2170).		
p2172[0...n]	DC link voltage threshold value / Vdc thresh val		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2001	Dyn. index: DDS, p0180
	Units group: 5_2	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0 [V]	2000 [V]	800 [V]
Description:	Sets the DC link voltage threshold value for the following messages: "Vdc_act <= Vdc_threshold p2172" (BO: r2197.9) "Vdc_act > Vdc_threshold p2172" (BO: r2197.10)		
Dependency:	Refer to: p2173		

p2173[0...n]	DC link voltage comparison delay time / t_del Vdc		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	10 [ms]
Description:	Sets the delay time for the comparison of the DC link voltage r0070 with the threshold value p2172.		
Dependency:	Refer to: p2172		
p2174[0...n]	Torque threshold value 1 / M_thresh val 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8012
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	5.13 [Nm]
Description:	Sets the torque threshold value for the messages:		
	"Torque setpoint < torque threshold value 1 and n_set reached" (BO: r2198.9)		
	"Torque setpoint < torque threshold value 1" (BO: r2198.10)		
	"Torque setpoint > torque threshold value 1" (BO: r2198.13)		
Dependency:	Refer to: p2195, r2198		
p2175[0...n]	Motor blocked speed threshold / Mot lock n_thresh		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8012
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	120.00 [rpm]
Description:	Sets the speed threshold for the message "Motor blocked" (BO: r2198.6).		
Dependency:	Refer to: p0500, p2177, r2198		
Note:	The following applies for encoderless vector control for induction motors:		
	At low speeds in open-loop speed controlled operation (see p1755, p1756), a blocked motor cannot be detected.		
	The following applies for encoderless vector control for permanent magnet synchronous motors:		
	At low speeds in open-loop speed controlled operation (see p1755, p1756), a blocked motor can only be detected if $\mathrm{p} 2175=\mathrm{p} 1755$, and p 1750 bit 6 is set to 1 .		
p2176[0...n]	Torque threshold value comparison delay time / M_thrsh comp T_del		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	200 [ms]
Description: Dependency:	Sets the delay time for the comparison of the torque actual value (r0080) with torque threshold value 1 (p2174).		
p2177[0...n]	Motor blocked delay time / Mot lock t_del		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	0.000 [s]	65.000 [s]	3.000 [s]
Description:	Sets the delay time for the message "Motor blocked" (BO: r2198.6).		
Dependency:	Refer to: p0500, p2175, r2198		

1.2 List of parameters

Note: \quad The following applies for sensorless vector control:
At low speeds a locked motor can only be detected if no change is made to open-loop speed controlled operation. If this is the case, the value in p2177 must be reduced accordingly (p 2177 < p1758) before time p2177 has elapsed in order to detect the locked state reliably.
As countermeasure, it is generally also possible to set p1750.6. This is only not permitted if the drive is slowly reversed by the load at the torque limit (speed below p1755 for longer than p1758).

p2178[0...n]	Motor stalled delay time / Mot stall t_del		
	Access level: 3	Calculated: p0340 = 1,3	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	0.000 [s]	10.000 [s]	0.010 [s]
Description:	Sets the delay time for the message "Motor stalled" (BO: r2198.7).		
Dependency:	Refer to: r2198		
Note:	In the open-loop speed controlled operating range (see p1755, p1756), vector control stall monitoring depends on threshold p1745.		
	At higher speeds, the difference between flux setpoint r0083 and flux actual value r0084 is monitored.		

p2179[0...n]	Output load identification current limit / Outp_Id iden I_lim		
	Access level: 3	Calculated: $\mathrm{p} 0340=1,3,5$	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: p2002	Dyn. index: DDS, p0180
	Units group: 6_2	Unit selection: p0505	Func. diagram: -
	Min	Max	Factory setting
	0.00 [Arms]	1000.00 [Arms]	0.00 [Arms]
Description:	Sets the current limit for output load identification.		
Dependency:	Refer to: p2180		
Notice:	For synchronous motors the output current can be almost zero under no load conditions.		
Note:	A missing output load cond	if the motor is either not con	a phase has failed.

p2180[0...n]	Missing output load delay time / No load t_delay		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	10000 [ms]	2000 [ms]
Description:	Sets the delay time to detect a missing output load.		
Dependency:	Refer to: p2179		
p2181[0...n]	Load monitoring response / Load monit resp		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8013
	Min	Max	Factory setting
	0	6	0
Description:	Sets the response when evaluating the load monitoring.		
Value:	0 : Load monitoring		
	1: A07920 for torqu		
	2: A07921 for torqu		
	3: A07922 for torqu	f tolerance	
	4: F07923 for torqu		
	5: F07924 for torqu	high	
	6: F07925 for torqu	f tolerance	
Dependency:	Refer to: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, p2193, r2198, p3		

Note: \quad The response to the faults F07923 ... F07925 can be set. F07926 is evaluated only if p2181 is not zero. This parameter setting has no effect on the production of fault F07936.

p2182[0...n]	Load monitoring speed threshold value 1 / n_thresh 1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	150.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_tthreshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2183, p2184, p2185, p2186		
Note:	In order that the load mo	eliably respond, the spee	2182 should always be set lowe

p2183[0...n]	Load monitoring speed threshold value 2 / n_thresh 2		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	900.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds: p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2184, p2187, p2188		

p2184[0...n]	Load monitoring speed threshold value 3 / n_thresh 3		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 3_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [rpm]	210000.00 [rpm]	1500.00 [rpm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
	The envelope curve (upper and lower envelope curve) is defined as follows based on 3 speed thresholds:		
	p2182 (n_threshold 1) --> p2185 (M_threshold 1, upper), p2186 (M_threshold 1, lower)		
	p2183 (n_threshold 2) --> p2187 (M_threshold 2, upper), p2188 (M_threshold 2, lower)		
	p2184 (n_threshold 3) --> p2189 (M_threshold 3, upper), p2190 (M_threshold 3, lower)		
Dependency:	The following applies: p2182 < p2183 < p2184		
	Refer to: p2182, p2183, p2189, p2190		
Note:	In order that the load monitoring can reliably respond, the speed threshold p2184 should always be set higher than the maximum motor speed to be monitored.		

p2185[0...n]	Load monitoring torque threshold 1 upper / M_thresh 1 upper		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	10000000.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2185 > p2186		
	Refer to: p2182, p2186		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2186[0...n]	Load monitoring torque threshold 1 lower / M_thresh 1 lower		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2186 < p2185		
	Refer to: p2182, p2185		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2187[0...n]	Load monitoring torque threshold 2 upper / M_thresh 2 upper		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	$10000000.00[\mathrm{Nm}]$
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2187 > p2188		
	Refer to: p2183, p2188		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2188[0...n]	Load monitoring torque threshold 2 lower / M_thresh 2 lower		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2188 < p2187		
	Refer to: p2183, p2187		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2189[0...n]	Load monitoring torque threshold 3 upper / M_thresh 3 upper		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	10000000.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		

Dependency:	The following applies: p2189 > p2190		
	Refer to: p2184, p2190		
Note:	The upper envelope curve is defined by p2185, p2187 and p2189.		
p2190[0...n]	Load monitoring torque threshold 3 lower / M_thresh 3 lower		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: 7_1	Unit selection: p0505	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [Nm]	20000000.00 [Nm]	0.00 [Nm]
Description:	Sets the speed/torque envelope curve for load monitoring.		
Dependency:	The following applies: p2190 < p2189		
	Refer to: p2184, p2189		
Note:	The lower envelope curve is defined by p2186, p2188 and p2190.		
p2192[0...n]	Load monitoring delay time / Load monit t_del		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8013
	Min	Max	Factory setting
	0.00 [s]	65.00 [s]	10.00 [s]
Description:	Sets the delay time to evaluate the load monitoring.		
p2193[0...n]	Load monitoring configuration / Load monit config		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8013
	Min	Max	Factory setting
	0	3	1
Description:	Sets the load monitoring configuration.		
Value:	0 : Monitoring switched out 1: \quad Monitoring torque and load drop 2: \quad Monitoring speed and load drop 3: \quad Monitoring load drop		
Dependency:	Refer to: p2182, p2183, p2184, p2185, p2186, p2187, p2188, p2189, p2190, p2192, r2198, p3230, p3231, p3232		
p2194[0...n]	Torque threshold value 2 / M_thresh val 2		
	Access level: 3	Calculated: p0340 = 1,3,5	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 8012
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	90.00 [\%]
Description:	Sets the torque threshold value for the message "Torque utilization < torque threshold value 2" (BO: r2199.11). The message "torque setpoint < p2174" (BO: r2198.10) and "torque utilization < p2194" (BO: r2199.11) are only evaluated after the run-up and the delay time has expired.		
Dependency:	Refer to: r0033, p2195, r2199		

Re bit 05:
The threshold value is set in p1266 and the delay time in p1228.
Re bit 06:
The hysteresis is set in p2162.
Re bit 07:
The threshold value is set in p2163 and the hysteresis is set in p2164.
Re bit 08:
The threshold value is set in p2170 and the delay time in p2171.
Re bit 09, 10:
The threshold value is set in p2172 and the delay time in p2173.
Re bit 11:
The threshold value is set in p2179 and the delay time in p2180.
Re bit 12:
The threshold value is set in p2182, the hysteresis in p2162, and the delay time (for canceling the signal) in p2152.
Re bit 13:
Only for internal Siemens use.

Note:
Re bit 10:
The torque threshold value 1 is set in p2174.
Re bit 12:
This bit is reset after the fault cause disappears, even if the fault itself is still present.

r2199.0..11	CO/BO: Status word monitoring 3 / ZSW monitor 3		
	Access level: 3	Calculated: -	Data type: Unsigned16

1.2 List of parameters

	04	Speed setp - act val deviation in tolerance t on	Yes	No	8011
	05	Ramp-up/ramp-down completed	Yes	No	8011
	11	Torque utilization < torque threshold value 2	Yes	No	8012
Note:	Re bit 00:				
	The speed threshold value 3 is set in p2161.				
	Re bit 01:				
	The comparison value is set in p2141. We recommend setting the hysteresis (p2142) for canceling the bit to a value lower than that in p2141. Otherwise, the bit is not reset.				
	Re bit 11:				
	The torque threshold value 2 is set in p2194.				

p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable		
	Access level: 2	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to switch in/switch out the technology controller.		
	The technology controller is switched in with a 1 signal.		
p2201[0...n]	CO: Technology controller fixed value 1 / Tec_ctrl fix val 1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	10.00 [\%]
Description:	Sets the value for fixed value 1 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data		

p2202[0...n]	CO: Technology controller fixed value 2 / Tec_ctr fix val 2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	20.00 [\%]
Description:	Sets the value for fixed value 2 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2203[0...n]	CO: Technology controller fixed value 3 / Tec_ctr fix val 3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	30.00 [\%]
Description:	Sets the value for fixed value 3 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2204[0...n]	CO: Technology controller fixed value 4 / Tec_ctr fix val 4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	40.00 [\%]
Description:	Sets the value for fixed value 4 of the technology controller		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2205[0...n]	CO: Technology controller fixed value 5 / Tec_ctr fix val 5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	50.00 [\%]
Description:			
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2206[0...n]	CO: Technology controller fixed value 6 / Tec_ctr fix val 6		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	60.00 [\%]
Description:	Sets the value for fixed value 6 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2207[0...n]	CO: Technology controller fixed value 7 / Tec_ctr fix val 7		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	70.00 [\%]
Description:			
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2208[0...n]	CO: Technology controller fixed value 8 / Tec_ctr fix val 8		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	80.00 [\%]
Description:	Sets the value for fixed value 8 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2209[0...n]	CO: Technology controller fixed value 9 / Tec_ctr fix val 9		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	90.00 [\%]
Description:	Sets the value for fixed value 9 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2210[0...n]	CO: Technology controller fixed value 10 / Tec_ctr fix val 10		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:			
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2211[0...n]	CO: Technology controller fixed value 11 / Tec_ctr fix val 11		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	110.00 [\%]
Description:	Sets the value for fixed value 11 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2212[0...n]	CO: Technology controller fixed value 12 / Tec_ctr fix val 12		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	120.00 [\%]
Description:	Sets the value for fixed value 12 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2213[0...n]	CO: Technology controller fixed value 13 / Tec_ctr fix val 13		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	130.00 [\%]
Description:	Sets the value for fixed value 13 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		

p2214[0...n]	CO: Technology controller fixed value 14 / Tec_ctr fix val 14		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	140.00 [\%]
Description:	Sets the value for fixed value 14 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2215[0...n]	CO: Technology controller fixed value 15 / Tec_ctr fix val 15		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: DDS, p0180
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7950
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	150.00 [\%]
Description:	Sets the value for fixed value 15 of the technology controller.		
Dependency:	Refer to: p2220, p2221, p2222, p2223, r2224, r2229		
Notice:	A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set.		
p2216[0...n]	Technology controller fixed value selection method / Tec_ctr FixVal sel		
	Access level: 2	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	2	1
Description:	Sets the method to select the fixed setpoints.		
Value:	1: Direct selection		
	2: Binary selection		
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7950
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the fixed value of the technology controller.		
Dependency:	Refer to: p2221, p2222, p2223		
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7950
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source to select the fixed value of the technology controller.		
Dependency:	Refer to: p2220, p2222, p2223		

r2245	CO: Technology controller mot. potentiometer setpoint before RFG / Tec_ctr mop befRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Sets the effective setpoint in front of the internal motorized potentiometer ramp-function generator of the technology controller.		
Dependency:	Refer to: r2250		
p2247[0...n]	Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 7954
	Min	Max	Factory setting
	0.0 [s]	1000.0 [s]	10.0 [s]
Description:	Sets the ramp-up time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2248		
Note:	The time is referred to 100%.		
	When the initial rounding-off is activated (p2230.2 = 1) the ramp-up is correspondingly extended.		
p2248[0...n]	Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: 7954
	Min	Max	Factory setting
	0.0 [s]	1000.0 [s]	10.0 [s]
Description:	Sets the ramp-down time for the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: p2247		
Note:	The time is referred to 100%.		
	When the initial rounding-off is activated (p2230.2 = 1) the ramp-down is correspondingly extended.		
r2250	CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7954
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the effective setpoint after the internal ramp-function generator for the motorized potentiometer of the technology controller.		
Dependency:	Refer to: r2245		

p2251	Technology controller mode / Tec_ctrl mode		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0	1	0
Description:	Sets the mode for using the technology controller output.		
Value:	0: Technology controller as main speed setpoint 1: Technology controller as supplementary speed setpoint		
Dependency:	$\mathrm{p} 2251=0,1$ is only effective if the enable signal of the technology controller is interconnected ($\mathrm{p} 2200>0$).		
p2253[0...n]	CI: Technology controller setpoint 1 / Tec_ctrl setp 1		
	Access level: 2	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint 1 of the technology controller.		
Dependency:	Refer to: p2254, p2255		
p2254[0...n]	CI: Technology controller setpoint 2 / Tec_ctrl setp 2		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the setpoint 2 of the technology controller.		
Dependency:	Refer to: p2253, p2256		
p2255	Technology controller setpoint 1 scaling / Tec_ctrl set1 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 1 of the technology controller.		
Dependency:	Refer to: p2253		
p2256	Technology controller setpoint 2 scaling / Tec_ctrl set2 scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the setpoint 2 of the technology controller.		
Dependency:	Refer to: p2254		

p2257	Technology controller ramp-up time / Tec_ctrl t_ramp-up		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-up time of the technology controller.		
Dependency:	Refer to: p2258		
Note:	The ramp-up time is referred to 100%.		
p2258	Technology controller ramp-down time / Tec_ctrl t_ramp-dn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [s]	650.00 [s]	1.00 [s]
Description:	Sets the ramp-down time of the technology controller.		
Dependency:	Refer to: p2257		
Note:	The ramp-down time is referred to 100%.		
r2260	CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Sets the setpoint after the ramp-function generator of the technology controller.		
p2261	Technology controller setpoint filter time constant / Tec_ctrl set T		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description:	Sets the time constant for the setpoint filter (PT1) of the technology controller.		
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFlt		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the smoothed setpoint after the setpoint filter (PT1) of the technology controller.		
p2263	Technology controller type / Tec_ctrl type		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0	1	0
Description:	Sets the technology controller type.		

1.2 List of parameters

| Value: | $0:$ | D component in the actual value signal | |
| :--- | :--- | :--- | :--- | :--- |
| | 1: | D component in the fault signal | |
| p2264[0...n] | CI: Technology controller actual value / Tec_ctrl act val | | |
| | Access level: 2 | Calculated: - | Data type: U32 / FloatingPoint32 |
| | Can be changed: U, T | Scaling: PERCENT | Dyn. index: CDS, p0170 |
| | Units group: - | Unit selection: - | Func. diagram: 7958 |
| | Min | - | Factory setting |
| | - | 0 | |

p2265	Technology controller actual value filter time constant / Tec_ctrl act T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	$0.000[s]$	$60.000[\mathrm{~s}]$	0.000 [s]
Description:	Sets the time constant for the actual value filter (PT1) of the technology controller.		

r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFIt		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: $9_{-} 1$	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	$-[\%]$	$-[\%]$	$-[\%]$

Description: Displays the smoothed actual value after the filter (PT1) of the technology controller

p2267	Technology controller upper limit actual value / Tec_ctrl u_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the upper limit for the actual value signal of the technology controller.		
Dependency:	Refer to: p2264, p2265, p2271		
Notice:	If the actual value exceeds this upper limit, this results in fault F07426.		
p2268	Technology controller lower limit actual value / Tec_ctrl I_lim act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	-100.00 [\%]
Description:	Sets the lower limit for the actual value signal of the technology controller.		
Dependency:	Refer to: p2264, p2265, p2271		
Notice:	If the actual value falls below this lower limit, this results in fault F07426.		

p2269	Technology controller gain actual value / Tech_ctrl gain act		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [\%]	500.00 [\%]	100.00 [\%]
Description:	Sets the scaling factor for the actual value of the technology controller.		
Dependency:	Refer to: p2264, p2265, p2267, p2268, p2271		
Note:	For 100%, the actual value is not changed.		
p2270	Technology controller actual value function / Tec_ctr ActVal fct		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0	3	0
Description:	Setting to use an arithmetic function for the actual value signal of the technology controller.		
Value:	0 : No function		
	1: Root function (root from x)		
	2: Square function ($\mathrm{x}^{*} \mathrm{x}$)		
	3: Cube function ($\mathrm{x}^{*} \mathrm{x}^{*} \mathrm{x}$)		
Dependency:	Refer to: p2264, p2265, p2267, p2268, p2269, p2271		
p2271	Technology controller actual value inversion (sensor type) / Tech_ctrl act inv		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	1	0
Description:	Setting to invert the actual value signal of the technology controller.		
	The inversion depends on the sensor type for the actual value signal.		
Value:	0: No inversion 1: Inversion actual value signal		
Caution: 个	If the actual value inversion is incorrectly selected, then the closed-loop control with the technology controller can become unstable and can oscillate!		
Note:	The correct setting can be determined as follows: - inhibit the technology controller (p2200 $=0$). - increase the motor speed and in so doing, measure the actual value signal of the technology controller. --> If the actual value increases as the motor speed increases, then p2271 should be set to 0 (no inversion). --> If the actual value decreases as the motor speed increases, then p2271 should be set to 1 (the actual value signal is inverted).		
r2272	CO: Technology controller actual value scaled / Tech_ctrl act scal		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the scaled actual value signal of the technology controller.		
Dependency:	Refer to: p2264, p2265, r2266, p2267, p2268, p2269, p2270, p2271		

1.2 List of parameters

r2273	CO: Technology controller error / Tec_ctrl error		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Units group: 9_1	Unit selection: p0595	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	- [\%]
Description:	Displays the error (system deviation) between the setpoint and actual value of the technology controller. Refer to: p2263		
Dependency:			
p2274	Technology controller differentiation time constant / Tec_ctrl D comp T		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000 [s]	60.000 [s]	0.000 [s]
Description: Note:	Sets the time constant for the differentiation (D component) of the technology controller. p2274 = 0: Differentiation is disabled.		
p2280	Technology controller proportional gain / Tec_ctrl Kp		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000	1000.000	1.000
Description:	Sets the proportional gain (P component) of the technology controller. p2280 $=0$: The proportional gain is disabled.		
Note:			
p2285	Technology controller integral time / Tec_ctrl Tn		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.000 [s]	10000.000 [s]	30.000 [s]
Description:	Sets the integral time (I component, integrating time constant) of the technology controller.The following applies for p2251 = 0:		
Notice:			
	If the output of the technology controller lies within the range of a suppression (skip) bandwidth (p1091 ... p1094, p 1101) or below the minimum speed (p 1080), the integral component of the controller is held so that the controller temporarily works as a P controller. This is necessary in order to prevent the controller from behaving in an unstable manner, as the ramp-function generator switches to the parameterized up and down ramps (p1120, p1121) at the same time in order to avoid setpoint steps. This state can be exited or avoided by changing the controller setpoint or by using the start speed (= minimum speed).		
Note:	When the controller output reaches the limit, the I component of the controller is held. p2285 = 0:		
	The integral time is disabled and the I component of the controller is reset.		
p2286[0...n]	BI: Hold technology controller integrator / Tec_ctr integ stop		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	56.13
Description:	Sets the signal source to hold the integrator for the technology controller.		

p2289[0...n]	Cl : Technology controller pre-control signal / Tec_ctrl prectrl		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the pre-control signal of the technology controller.		
p2291	CO: Technology controller maximum limiting / Tec_ctrl max_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	100.00 [\%]
Description:	Sets the maximum limit of the technology controller.		
Dependency:	Refer to: p2292		
Caution:	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		
p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-200.00 [\%]	200.00 [\%]	0.00 [\%]
Description:	Sets the minimum limit of the technology controller.		
Dependency:	Refer to: p2291		
Caution:	The maximum limit must always be greater than the minimum limit (p2291 > p2292).		
p2293	Technology controller ramp-up/ramp-down time / Tec_ctr ramp up/dn		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0.00 [s]	100.00 [s]	1.00 [s]
Description:	Sets the ramping time for the output signal of the technology controller.		
Dependency:	Refer to: p2291, p2292		
Note:	The time refers to the set maximum and minimum limits (p2291, p2292).		
r2294	CO: Technology controller output signal / Tec_ctrl outp_sig		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	- [\%]	- [\%]	
Description: Dependency:	Displays the output signal of the technology controller. Refer to: p2295		

p2295	CO: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-100.00 [\%]	100.00 [\%]	100.00 [\%]
Description:	Sets the scaling for the output signal of the technology controller.		
p2296[0...n]	CI: Technology controller output scaling / Tec_ctrl outp scal		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	2295[0]
Description:	Sets the signal source for the scaling value of the technology controller.		
Dependency:	Refer to: p2295		
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
		-	1084[0]
Description:	Sets the signal source for the maximum limiting of the technology controller.		
Dependency:	Refer to: p2291		
Note:	In order that the output of the technology controller does not exceed the maximum speed limit, its upper limit p2297 should be connected to the actual maximum speed r1084.		
	In mode p2251 = 1, p2299 must also be connected to the output of the ramp-function generator r1150.		
p2298[0...n]	CI: Technology controller minimum limit signal source / Tec_ctrl min_I s_s		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
		-	1087[0]
Description:	Sets the signal source for the minimum limiting of the technology controller.		
Dependency:	Refer to: p2292		
Note:	If the technology controller is rotated in a negative direction in mode p2251 = 0, its lower limit p2298 should be connected to the actual minimum speed r1087.		

p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: U, T	Scaling: PERCENT	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the offset of the output limiting of the technology controller.		
Note:	In mode p2251 = 1, p22 controller stops when th	nnected to the output are reached (see als	generator r1150 so that the technology

1.2 List of parameters

p2345	Technology controller fault response / Tech_ctrl flt resp		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7958
	Min	Max	Factory setting
	0	2	0
Description:	Sets the response of the technology controller to the occurrence of fault F07426 (technology controller actual value limited).		
	The fault response is executed if status bit 8 or 9 in the technology controller status word r2349 is set. If both status bits are zero, a switch back to technology controller operation will follow.		
Value:	0: Function inhibite		
	1: On fault: Change	(or p2302)	
	2: On fault: Change		
Dependency:	The parameterized fault response is only effective if the technology controller mode is set to p2251 $=0$ (technology controller as main setpoint).		
	Refer to: p2267, p2268, r2344		
Notice:	Dependent upon the application, the changing over of the setpoint when fault F07426 occurs can lead to the fault condition disappearing and the re-activation of the technology controller. This can repeat itself and cause limit oscillations. In this case, a different fault response or a different fixed setpoint 15 for the fault response p2345 $=2$ should be selected.		
Note:	The parameterized fault response can only be achieved if the default fault response of the technology controller fault F07426 is set to "NONE" (see p2100, p2101). If a fault response other than "NONE" is entered in p2101 for F07426, p2345 must be set to zero.		
	If the fault occurs during ramping up to the starting setpoint p2302, this starting setpoint is retained as the final value (there is no changeover to the fault response setpoint).		

r2349.0... 12 CO/BO: Technology controller status word / Tec_ctrl status
Access level: 3 Calculated: - Data type: Unsigned32
Can be changed: - Scaling: - Dyn. index: -
Units group: - Unit selection: - Func. diagram: 7958
Min Max Factory setting

Description: Displays the status word of the technology controller.

Bit field:

Bit	Signal name	$\mathbf{1}$ signal	$\mathbf{0}$ signal
00	Technology controller de-activated	Yes	
01	Technology controller limited	No	
02	Technology controller motorized	Yes	No
03	potentiometer limited max.	No	
04	Technology controller motorized potentiometer limited min.	Yes	No
04	Technology controller speed setpoint total in setpoint channel	Yes	No
05	Technology controller RFG bypassed in the setpoint channel	Yes	No
06	Technology controller starting value at the current limit	No	Yes
08	Technology controller actual value at the minimum	Yes	No
09	Technology controller actual value at the maximum	Yes	No
10	Technology controller output at the minimum	Yes	No
11	Technology controller output at the maximum	Yes	Yes
12	Fault response active	No	

1.2 List of parameters

Notice: A BICO interconnection to a parameter that belongs to a drive data set always acts on the effective data set. Note: The value can, for example, be used to interconnect a supplementary torque.

1.2 List of parameters

Dependency:	Refer to: r2169, p2181, p2193, p3230		
p3232[0...n]	BI: Load monitoring failure detection / Load_moni fail_det		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170

p3235	Phase failure signal motor monitoring time / Ph_fail t_monit		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0 [ms]	2000 [ms]	320 [ms]
Description:	Sets the monitoring time for phase failure detection of the motor.		
Notice:	After the value has been modified, no further parameter modifications can be made and the status is shown in r3996. Modifications can be made again when r3996 $=0$.		
Note:	For p3235 $=0$ the function is deactivated.		
	The monitoring is automatically de-activated during the flying restart operation for a motor that is still rotating.3-phase phase failures cannot be detected and are indicated by other messages (e.g. F07902).		

p3321[0...n]	Fluid flow machine speed point 1 / Fluid_mach n1		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	0.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 1 as a [\%].		
	The characteristic comprises the following value pairs:		
	Power (P) / speed (n)		
	p3320 / p3321 --> point 1 (P1/n1)		
	p3322 / p3323 --> point 2 ($\mathrm{P} 2 / \mathrm{n} 2)$		
	p3324 / p3325 --> point 3 (P3 / n3)		
	p3326 / p3327 --> point 4 (P4/n4)		
	p3328 / p3329 --> point 5 (P5 / n5)		
Dependency:	Refer to: r0041, p3320, p3322, p3323, p3324, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3322[0...n]	Fluid flow machine power point 2 / Fluid_mach P2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	50.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 2 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3323, p3324, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3323[0...n]	Fluid flow machine speed point 2 / Fluid_mach n2		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	25.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 2 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3324, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		

p3324[0...n]	Fluid flow machine power point 3 / Fluid_mach P3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	77.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 3 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3325, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3325[0...n]	Fluid flow machine speed point 3 / Fluid_mach n3		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	50.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 3 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3326, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3326[0...n]	Fluid flow machine power point 4 / Fluid_mach P4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	92.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 4 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3327, p3328, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3327[0...n]	Fluid flow machine speed point 4 / Fluid_mach n4		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	75.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3328, p3329		
Note:	The energy saved is displayed in r0041.		

p3328[0...n]	Fluid flow machine power point 5 / Fluid_mach P5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the power (P) of point 5 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3329		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3329[0...n]	Fluid flow machine speed point 5 / Fluid_mach n5		
	Access level: 2	Calculated: -	Data type: FloatingPoint32
	Can be changed: U, T	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00	100.00	100.00
Description:	For the energy-saving display of a fluid-flow machine, a typical flow characteristic $P=f(n)$ with 5 points along the characteristic is required.		
	This parameter specifies the speed (n) of point 5 as a [\%].		
Dependency:	Refer to: r0041, p3320, p3321, p3322, p3323, p3324, p3325, p3326, p3327, p3328		
Note:	The reference value for power and speed is the rated power/rated speed.		
	The energy saved is displayed in r0041.		
p3330[0...n]	BI: 2/3 wire control command 1 / 2/3 wire cmd 1		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for command 1 for the two-wire control/three-wire control.		
Dependency:	Refer to: p0015, p3331, p3332, r3333, p3334		
Note:	The mode of operation of this binector input is dependent on the wire control set in p0015.		
p3330[0...n]	BI: 2/3 wire control command 1 / 2/3 wire cmd 1		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	[0] 722.0
			[1] 0
			[2] 0
			[3] 0
Description:	Sets the signal source for command 1 for the two-wire control/three-wire control.		
Dependency:	Refer to: p0015, p3331, p3332, r3333, p3334		
Note:	The mode of operation of this binector input is dependent on the wire control set in p0015.		

p3331[0...n]	BI: 2/3 wire control command 2 / 2/3 wire cmd 2		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: U32 / Binary
CU_G110M_PN	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for command 2 for the two-wire control/three-wire control. Refer to: p0015, p3330, p3332, r3333, p3334		
Dependency:			
Note:	The mode of operation of this binector input is dependent on the wire control set in p0015.		
p3331[0...n]	BI: 2/3 wire control command 2 / 2/3 wire cmd 2		
CU_G110M_USS	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: U, T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	[0] 722.1
			[1] 0
			[2] 0
			[3] 0

Description: Sets the signal source for command 2 for the two-wire control/three-wire control.
Dependency: Refer to: p0015, p3330, p3332, r3333, p3334
Note: \quad The mode of operation of this binector input is dependent on the wire control set in p0015.

p3332[0...n]	BI: 2/3 wire control command 3 / 2/3 wire cmd 3				
	Access level: 3		Calculated: -	Data type: U32 / Binary	
	Can be changed: U, T		Scaling: -	Dyn. index: CDS, p0170	
	Units group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-		-	0	
Description:	Sets the signal source for command 3 for the two-wire control/three-wire control.				
Dependency:	Refer to: p0015, p3330, p3331, r3333, p3334				
Note:	The mode of operation of this binector input is dependent on the wire control set in p0015.				
r3333.0... 3	CO/BO: 2/3 wire control control word / 2/3 wire STW				
	Access level: 3		Calculated: -	Data type: Unsigned32	
	Can be changed: -		Scaling: -	Dyn. index: -	
	Units group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	-			-	
Description:	Displays the control word for the two wire control/three wire control.				
	The control signals are dependent on the wire control set in p0015 and the signal states at the digital inputs.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	ON	Yes	No	-
		Reversing	Yes	No	-
		ON/inverting	Yes	No	-
		Reversing/inverting	Yes	No	-
Dependency:	Refer to: p0015, p3330, p3331, p3332, p3334				

p3334	2/3 wire control selection / 2/3 wire select		
CU_G110M_DP	Access level: 4	Calculated: -	Data type: Integer16
CU_G110M_PN	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	4	0
Description:	Sets the two wire control/three wire control.		
Value:	0: No wire control 1: Two wire control 2: Two wire control 3: Three wire contro 4: Three wire contro	unterclockwise 1 unterclockwise 2 ckwise/counterclock /reversing	
Dependency:	Refer to: p0015, p3330, p3331, p3332, r3333		
Note:	This value depends on the wire control set in p0015.		
p3334	2/3 wire control selection / 2/3 wire select		
CU_G110M_USS	Access level: 4	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
		Max	Factory setting
	0	4	1
Description: Sets the two wire contro		Sets the two wire control/three wire control.	
Value:	0: No wire control 1: Two wire control 2: Two wire control 3: Three wire contro 4: Three wire contro	unterclockwise 1 unterclockwise 2 ckwise/counterclock /reversing	
Dependency:	Refer to: p0015, p3330, p3331, p3332, r3333		
Note:	This value depends on the wire control set in p0015.		
p3340[0...n]	BI: Limit switch start / Lim switch start		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the start of motion dependent on the sign of the setpoint.		
Dependency:	Refer to: p3342, p3343, r3344		
p3342[0...n]	BI: Limit switch plus / Lim switch plus		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: CDS, p0170
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	1
Description:	Sets the signal source for the limit switch plus.		
	BI: p3342 = 1 signal:		
	Limit switch is inactive.		
	BI: p3342 = 0 signal:		
	Limit switch is active.		
Dependency:	Refer to: p3340, p3343,		

r3927[0...n]	Motor data identification control word / MotID STW		
	Access level: 3	Calculated: p0340 =	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: DDS, p0180
	Units group: -	Unit selection:	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Successfully completed component of the last motor data identification carried out.		

1.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	Stator inductance estimate no measurement	Yes	No	-
	02	Rotor time constant estimate no measurement	Yes	No	-
	03	Leakage inductance estimate no measurement	Yes	No	-
	05	Determine Tr and Lsig evaluation in the time range	Yes	No	-
	06	Activate vibration damping	Yes	No	-
	07	De-activate vibration detection	Yes	No	-
	11	De-activate pulse measurement Lq Ld	Yes	No	-
	12	De-activate rotor resistance Rr measurement	Yes	No	-
	14	De-activate valve interlocking time measurement	Yes	No	-
	15	Determine only stator resistance, valve voltage fault, dead time	Yes	No	-
	16	Short motor identification (lower quality)	Yes	No	-
	17	Measurement without control parameter calculation	Yes	No	-
Dependency:	Refer to: r3925				
Note:	The	parameter is a copy of p 1909.			

r3928[0...n]	Rotating measurement configuration / Rot meas config				
	Access level: 3		Calculated: p0340 = 1	Data type: Unsigned16	
	Can be changed: -		Scaling: -	Dyn. index: DDS, p0180	
	Units group: -		Unit selection: -	Func. diagram: -	
	Min		Max	Factory setting	
	- -			-	
Description:	Successfully completed component of the last rotating measurement carried out.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
	01	Saturation characteristic identification	Yes	No	-
	02	Moment of inertia identification	Yes	No	-
	03	Re-calculates the speed controller parameters	Yes	No	-
	04	Speed controller optimization (vibration test)	Yes	No	-
	05	q leakage inductance ident. (for current controller adaptation)	Yes	No	-
	11	Do not change the controller parameters during the measurement	Yes	No	-
	12	Measurement shortened	Yes	No	-
		After measurement: direct transition into operation	Yes	No	-
Dependency:	Refer to: r3925				
Note:	The parameter is a copy of p 1959.				

r3929[0...n]	Motor data identification modulated voltage generation / MotID U_gen mod					
	Access level: 4		Calculated: p0340 = 1		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dyn. index: DDS, p0180	
	Units group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		-	
Description:	Configuration of voltage generation for the various MotID sections in the case of the most recent successful Motld.					
Bit field:	Bit 00	Signal name		1 signal	0 signal	FP
	00	Wobble U_generate to determine dead-time correction		Yes	No	-
	01	Wobble U_generate to determine stator resistance		Yes	No	-

1.2 List of parameters

r3974	Drive unit status word / Drv_unit ZSW					
	Acc	ss level: 1	Calculate		Data type: Unsigned32	
	Can	be changed: -	Scaling: -		Dyn. index: -	
	Unit	group: -	Unit selec	on: -	Func. diagram: -	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the status word for the drive unit.					
Bit field:	$\begin{array}{ll}\text { Bit } & \text { Signal name } \\ 00 & \text { Software reset active }\end{array}$			1 signal	0 signal	FP
				Yes	No	-
		Writing of parameters disabled as parameter save in progress		Yes	No	-
		Writing of parameters disabled as macro is running		Yes	No	
r3978	BICO CounterDevice / BICO CounterDevice					
	Access level: 4		Calculated: -		Data type: Unsigned32	
	Can be changed: -		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	-		-		-	
Description:	Displays the counter reading for modified BICO interconnections on this device. The counter is incremented by one for each modified BICO interconnection.					
p3981	Faults acknowledge drive object / Faults ackn DO					
	Access level: 3		Calculated: -		Data type: Unsigned8	
	Can be changed: U, T		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: 8060	
	Min		Max		Factory setting	
	0		1		0	
Description:	Setting to acknowledge all active faults of a drive object.					
Notice:	Safety messages cannot be acknowledged using this parameter.					
Note:	Parameter should be set from 0 to 1 to acknowledge.					
	After acknowledgement, the parameter is automatically reset to 0 .					
p3985	Master control mode selection / PcCtrl mode select					
	Access level: 3		Calculated: -		Data type: Integer16	
	Can be changed: U, T		Scaling: -		Dyn. index: -	
	Units group: -		Unit selection: -		Func. diagram: -	
	Min		Max		Factory setting	
	0		1		0	
Description:	Sets the mode to change over the master control / LOCAL mode.					
Value:	0 : \quad Change master control for STW1. $0=0$ 1: Change master control in operation					
Danger:	When changing the master control in operation, the drive can manifest undesirable behavior - e.g. it can accelerate up to another setpoint.					

1.2 List of parameters

p7759[0...19]	KHP Control Unit reference serial number / KHP CU ref ser_no					
		ss level: 3	Calculated		Data type: U	
		be changed: T	Scaling: -		Dyn. index:	
	Uni	group: -	Unit selec	-	Func. diagr	
	Min		Max		Factory sett	
	-		-		-	
Description:	Sets the reference serial number for the Control Unit.					
	Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware.					
Dependency:	Refer to: p7765, p7766, p7767, p7768					
Note:	KHP: Know-How Protection					
	- The OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".					
	- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.					
r7760	Write protection/know-how protection status / Wr_prot/KHP stat					
	Access level: 3		Calculated		Data type: U	
	Can be changed: -		Scaling: -		Dyn. index:	
	Units group: -		Unit selec	-	Func. diagra	
			Max		Factory sett	
	-		-		-	
Description:	Displays the status for the write protection and know-how protection.					
Bit field:		Signal name		1 sig	0 signal	FP
		Write protection		Yes	No	-
		Know-how protec		Yes	No	-
		Know-how protec	y withdrawn	Yes	No	-
		Know-how protec	deactivated	Yes	No	-
		Memory card cop	ctive	Yes	No	-
Dependency: Note:	Refer to: p7761, p7765, p7766, p7767, p7768					
	KHP: Know-How Protection					
	Re bit 00:					
	Write protection can be activated/deactivated via p7761 on the Control Unit.					
	The know-how protection can be activated by entering a password (p7766 ... p7768).					
	Re bit 02:					
	If it has already been activated, know-how protection can be temporarily deactivated by entering the valid password in p7766. In this case, bit $1=0$ and bit $2=1$ offset.					
	Re bit 03:					
	Know-how protection cannot be deactivated, as p7766 is not entered in the OEM exception list (only the factory setting is possible). This bit is only set if know-how protection is active (bit $1=1$) and p7766 has not been entered in the OEM exception list.					
	Re bit 04:					
	When know-how protection has been activated, the contents of the memory card (parameter and DCC data) can be additionally protected against being used with other memory cards. This bit is only set if know-how protection is active and p7765 = 1 .					
p7761	Write protection / Write protection					
	Access level: 3		Calculated		Data type: In	
	Can be changed: U, T		Scaling: -		Dyn. index:	
	Units group: -		Unit selec	on: -	Func. diagra	
	Min		Max		Factory sett	
	0		1		0	
Description:	Sett	for activating/d	write protec	tion for	eters.	

1.2 List of parameters

p7764[0...n]	KHP OEM exception list / KHP OEM excep list		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: U, T	Scaling: -	Dyn. index: p7763
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	65535	[0] 7766
			[1...499] 0
Description:	OEM exception list (p7764[0...n] for setting parameters that should be excluded from know-how protection. p7764[0...n], with $n=p 7763-1$		
Dependency:	The number of indices depends on p 7763.		
	Refer to: p7763		
Note:	KHP: Know-How Protection		
	Even if know-how protection is set, parameters in this list can be read and written to.		

p7765	KHP memory card copy protection / KHP copy protect		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	1	Factory setting
	0	0	
Description:	Setting for activating/de-activating copy protection for the memory card.		
	This means that the OEM can define whether the parameters and DCC data encrypted on the memory card should		
	be protected before using on other memory cards.		

Value:	$0:$	Deactivating protection
	$1:$	Activating protection

Dependency:	Refer to: $\mathrm{p} 7766, \mathrm{p} 7767, \mathrm{p} 7768$
Note:	KHP: Know-How Protection
	The memory card copy protection is only effective when the know-how protection has been activated.

p7767[0...29]

KHP password new / KHP passw new

Access level: 3	Calculated: -	Data type: Unsigned16
Can be changed: U, T	Scaling: -	Dyn. index: -
Units group: -	Unit selection: -	Func. diagram: -
Min	Max	Factory setting
-	-	
Sets the new password for know-how protection.		
Refer to: p7766, p7768		
KHP: Know-How Protection		
When reading, p7767[0..29]=42 dec (ASCII character $=" * ")$ is displayed.		

p7768[0...29] KHP password confirmation / KHP passw confirm

Access level: 3
Can be changed: U, T
Units group: -
Min

Calculated: -
Scaling: -
Unit selection: -
Max

Data type: Unsigned16
Dyn. index: -
Func. diagram: -
Factory setting

Description: Confirms the new password for know-how protection.
Dependency: Refer to: p7766, p7767
Note:
KHP: Know-How Protection
When reading, p7768[0...29] = $42 \mathrm{dec}($ ASCII character $=$ "*") is displayed.

p7769[0...20]	KHP memory card reference serial number / KHP mem ref ser_no		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Sets the reference serial number for the memory card.		
	Using this parameter, if a Control Unit and/or a memory card is replaced at the end customer, the OEM can again adapt the project to the modified hardware.		
Dependency:	Refer to: p7765, p7766, p7767, p7768		
Note:	KHP: Know-How Protection		
	- The OEM may only change this parameter for the use case "Sending encrypted SINAMICS data".		
	- SINAMICS only evaluates this parameter when powering up from the encrypted "Load into file system..." output or when powering up from the encrypted PS files. The evaluation is only made when know-how protection and memory card copy protection have been activated.		

r7841[0...15]	Power Module serial number / PM serial no.		
	Access level: 4	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
Description:	-	-	-
	Displays the actual serial number of the Power Module.		
	The individual characters of the serial number are displayed in the ASCII code in the indices.		

Notice: \quad An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.

r7843[0...20]	Memory card serial number / Mem_card ser.no		
	Access level: 1	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the actual serial number of the memory card.		
	The individual characters of the serial number are displayed in the ASCII code in the indices.		
Notice:	An ASCII table (exce	, for example, in th	List Manual.
Note:	Example: displaying the serial number for a memory card:		
	r7843[0] = 49 dec --> ASCII characters = "1" --> serial number, character 1		
	r7843[1] = 49 dec --> ASCII characters = "1" --> serial number, character 2		
	r7843[2] = 49 dec --> ASCII characters = "1" --> serial number, character 3		
	r7843[3] = 57 dec --> ASCII characters = "9" --> serial number, character 4		
	r7843[4] = 50 dec --> ASCII characters = "2" --> serial number, character 5		
	r7843[5] = 51 dec --> ASCII characters = "3" --> serial number, character 6		
	r7843[6] = 69 dec --> ASCII characters = "E" --> serial number, character 7		
	r7843[7] = 0 dec --> ASCII characters = " " --> serial number, character 8		
	r7843[19] = 0 dec --> ASCII characters = " " --> serial number, character 20		
	r7843[20] $=0 \mathrm{dec}$		
	Serial number $=111923 \mathrm{E}$		

r7901[0...75]	Sampling times / t_sample		
	Access level: 4	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]	- [$\mu \mathrm{s}$]
Description:			
	For $\mathrm{r} 7901[\mathrm{x}]=0$, the following applie		
	The time slice is not active.		
r7903	Hardware sampling times still assignable / HW t_samp free		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the number of hardware sampling times that can still be assigned.		
	These free sampling times can be used by OA applications such as DCC (Drive Control Chart) or FBLOCKS (free function blocks).		
Note:	OA: Open Architecture		
r8570[0...39]	Macro drive object / Macro DO		
	Access level: 1	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the macro file saved in the appropriate directory on the memory card/device memory.		

1.2 List of parameters

Dependency:	Refer to: p0015
Note:	For a value $=9999999$, the following applies: The read operation is still running.

r8571[0...39]	Macro Binector Input (BI) / Macro BI		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-

Description: Displays the ACX file saved in the appropriate directory in the non-volatile memory.
Note: \quad For a value $=9999999$, the following applies: The read operation is still running.

r8572[0...39]	Macro Connector Inputs (CI) for speed setpoints / Macro CI n_set		
	Access level: 4	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	-	Factory setting
	-	-	
Description:	Displays the ACX file saved in the appropriate directory in the non-volatile memory.		
Dependency:	Refer to: p1000		
Note:	For a value $=9999999$, the following applies: The read operation is still running.		

	6: Cyclic communications but no setpoints (stop/no clock cycle) 255: Cyclic communication		
r8858[0...39]	PROFINET read diagnostics channel / PN diag_chan read		
CU_G110M_PN	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFINET diagnostics data.		
Note:	Only for internal Siemens diagnostics.		
r8859[0...7]	PROFINET identification data / PN ident data		
CU_G110M_PN	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFINET identification data		
Index:	[0] = Version interface structure [1] = Version interface driver [2] = Company (Siemens = 42) [3] = CB type [4] = Firmware version [5] = Firmware date (year) [6] = Firmware date (day/month) [7] = Firmware patch/hot fix		
Note:	Example:		
	r8859[0] = 100 --> version of the interface structure V1.00		
	r8859[1] = 111 --> version of the interface driver V1.11		
	r8859[2] = 42 --> SIEMENS		
	$\mathrm{r} 8859[3]=0$		
	r8859[4] = 1300 --> first part, firmware version V13.00 (second part, see index 7)		
	r8859[5] = 2011 --> year 2011		
	r8859[6] = 2306 --> 23rd June		
	r8859[7] = 1700 --> second part, firmware version (complete version: V13.00.17.00)		
r8909	PN device ID / PN device ID		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		-	-
Description:	Displays the PROFINET Device ID.		
	Every SINAMICS device type has its own PROFINET Device ID and its own PROFINET GSD.		
Note:	List of the SINAMICS Device IDs:		
	0501 hex: S120/S150		
	0504 hex: G130/G150		
	050A hex: DC MASTER		
	050C hex: MV		
	050F hex: G120P		
	0510 hex: G120C		
	0511 hex: G120 CU240E-2		
	0512 hex: G120D		
	0513 hex: G120 CU250S-2 Vector		

1.2 List of parameters

```
0514 hex: G110M
0515 hex: G120 CU250S-2 Servo
```

p8920[0...239]	PN Name of Station / PN Name Stat		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-

Description:	Sets the station name for the onboard PROFINET interface on the Control Unit.
The active station name is displayed in r8930.	
Note:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.
The interface configuration (p8920 and following) is activated with p8925 $=1$.	
The parameter is not influenced by setting the factory setting.	
	PN: PROFINET

p8921[0...3]	PN IP address of station / PN IP of stat		
CU_G110M_PN	Access level: 3	Calculated: -	Scaling: -
	Can be changed: U, T	Unit selection: -	Dyn. index: -
	Units group: -	Max	Func. diagram: -
	Min	255	0
	0	Factory setting	
Description:	Sets the IP address for the onboard PROFINET interface on the Control Unit.		
	The active IP address is displayed in r8931.		
Note:	The interface configuration (p8920 and following) is activated with p8925 = 1.		

p8922[0...3]	PN Default Gateway of Station / PN Def Gateway		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	0
Description:	Sets the default gateway for the onboard PROFINET interface on the Control Unit. The active default gateway is displayed in r8932.		
Note:	The interface configuration (p8920 and following) is activated with p8925 = 1 . The parameter is not influenced by setting the factory setting.		
p8923[0...3]	PN Subnet Mask of Station / PN Subnet Mask		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	0
Description:	Sets the subnet mask for the onboard PROFINET interface on the Control Unit. The active subnet mask is displayed in r8933.		
Note:	The interface configuration (p8920 and following) is activated with p8925 $=1$. The parameter is not influenced by setting the factory setting.		

r8932[0...3]	PN Default Gateway of Station active / PN Def Gateway act		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description:	Displays the active default gateway for the onboard PROFINET interface on the Control Unit.		
r8933[0...3]	PN Subnet Mask of Station active / PN Subnet Mask act		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	-
Description:	Displays the active subnet mask for the onboard PROFINET interface on the Control Unit.		
r8935[0...5]	PN MAC Address of Station / PN MAC of Station		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	00FF hex	-
Description:	Displays the MAC address for the onboard PROFINET interface on the Control Unit.		
r8939	PN DAP ID / PN DAP ID		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFINET Device Access Point ID (DAP ID) for the onboard PROFINET interface. The combination of device ID (r8909) and DAP ID uniquely identifies a PROFINET access point.		
Note:	List of the SINAMICS DAP IDs:		
	20007 hex: CBE20 V4.5		
	20008 hex: CBE20 V4.6		
	20107 hex: CU310-2 PN V4.5		
	20108 hex: CU310-2 PN V4.6		
	20307 hex: CU320-2 PN V4.5		
	20308 hex: CU320-2 PN V4.6		
	20407 hex: CU230P-2 PN /CU240x-2 PN V4.5		
	20408 hex: CU230P-2 PN /CU240x-2 PN /CU250S-2 PN /G110M PN V4.6		
	20507 hex: CU250D-2 PN V4.5		
	20508 hex: CU250D-2 PN V4.6		
r8960[0...2]	PN subslot controller assignment / PN subslot assign		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	8	-
Description:	Displays the controller assignment of a PROFINET subslot on the actual drive object.		

1.2 List of parameters

p8982	Ethernet/IP ODVA speed scaling / Eth/IP ODVA n scal		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	123	133	128
Description:	Sets the scaling for the speed for Ethernet/IP ODVA profile ($\mathrm{p} 8980=1$).		
Value:	123: 32		
	124: 16		
	125: 8		
	126: 4		
	127: 2		
	128: 1		
	129: 0.5		
	130: 0.25		
	131: 0.125		
	132: 0.0625		
	133: 0.03125		
Dependency: Note:	Refer to: p8980		
	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p8983	Ethernet/IP ODVA torque scaling / Eth/IP ODVA M scal		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	123	133	128
Description: Value:	Sets the scaling for the torque for Ethernet/IP ODVA profile (p8980 = 1).		
	123: 32		
	124: 16		
	125: 8		
	126: 4		
	127: 2		
	128: 1		
	129: 0.5		
	130: 0.25		
	131: 0.125		
	132: 0.0625		
	133: 0.03125		
Dependency: Refer to: 88980		Refer to: p8980	
Note:	Changes only become effective after POWER ON.		
	The parameter is not influenced by setting the factory setting.		
p8991	USB memory access / USB mem acc		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	1	2	1
Description: Selects the storage m		Selects the storage medium for access via the USB mass storage.	
Value:	1: Memory card		
	2: Flash r/w internal		
Note:	A change only becomes effective after a POWER ON.The parameter is not influenced by setting the factory setting.		

1.2 List of parameters

Note: \quad	Re bit 00 and bit 01:
Bit $1 / 0=0 / 0$: No memory card inserted (corresponds to $\mathrm{p} 9400=0$).	
Bit $1 / 0=0 / 1:$ "Safe removal" possible (corresponds to $\mathrm{p} 9400=3$).	
Bit $1 / 0=1 / 0$: Status not possible.	
Bit $1 / 0=1 / 1$: Memory card inserted (corresponds to p9400 $=1,2,100$).	
Re bit 00 and bit 02 :	
Bit $2 / 0=0 / 0$: No memory card inserted.	
Bit $2 / 0=0 / 1$: Memory card inserted, but not a SIEMENS memory card.	
Bit $2 / 0=1 / 0:$ Status not possible.	
Bit $2 / 0=1 / 1:$ SIEMENS memory card inserted.	

r9406[0...19]	PS file parameter number parameter not transferred / PS par_no n transf		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the parameters that were not able to be transferred when reading the parameter back-up files (PS files) from the non-volatile memory (e.g. memory card).		
	$\mathrm{r} 9406[0]=0$		
	--> All of the parameter values were able to be transferred error-free.		
	r9406[0...x] > 0		
	--> indicates the parameter number in the following cases:		
	- parameter, whose value was not able to be completely accepted.		
	- indexed parameter, where at least 1 index was not able to be accepted. The first index that is not transferred is displayed in r9407.		
Dependency:	Refer to: r9407, r9408		
Note:	All indices from r9406 to r9408 designate the same parameter.		
	r9406[x] parameter number, parameter not accepted		
	r9407[x] parameter index, parameter not accepted		
	r9408[x] fault code, parameter not accepted		

r9407[0...19]	PS file parameter index parameter not transferred / PS parameter index		
	Access level: 4	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting

Description:	Displays the first index of the parameters that could not be transferred when the parameter backup files (PS files) were read from the non-volatile memory (e.g. memory card).
	If, from an indexed parameter, at least one index was not able to be transferred, then the parameter number is displayed in r9406[n] and the first index that was not transferred is displayed in r9407[n]. $\text { r9406[0] = } 0$
	--> All of the parameter values were able to be transferred error-free.
	r9406[n] > 0
	--> Displays r9407[n] the first index of the parameter number r9406[n] that was not transferred.
Dependency:	Refer to: r9406, r9408
Note:	All indices from r9406 to r9408 designate the same parameter.
	r9406[x] parameter number, parameter not accepted
	r9407[x] parameter index, parameter not accepted
	r9408[x] fault code, parameter not accepted

$\overline{\mathrm{p} 9651}$	SI STO debounce time (processor 1) / SI STO t_debou P1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(95)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0.00 [ms]	100.00 [ms]	1.00 [ms]
Description:	Sets the debounce time for the failsafe digital inputs used to control the "STO" function. The debounce time is rounded to whole milliseconds.		
Note:	The debounce time is rounded to whole milliseconds. It specifies the maximum duration of a fault pulse at the failsafe digital inputs with no reaction/influence on the selection or deselection of the Safety Basic Functions. Example: Debounce time $=1 \mathrm{~ms}$: Fault pulses of 1 ms are filtered; only pulses longer than 2 ms are processed. Debounce time $=3 \mathrm{~ms}$: Fault pulses of 3 ms are filtered; only pulses longer than 4 ms are processed.		
p9659	SI forced checking procedure timer / SI FCP Timer		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: C(95)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2810
	Min	Max	Factory setting
	0.00 [h]	9000.00 [h]	8.00 [h]
Description:	Sets the time interval for carrying out the forced checking procedure and testing the Safety shutdown paths. Within the parameterized time, STO must have been de-selected at least once. The monitoring time is reset each time that STO is de-selected.		
Note:	STO: Safe Torque Off		
r9660	SI forced checking procedure remaining time / SI frc chk remain		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	- [h]	- [h]	- [h]
Description:	Displays the time remaining before dynamization and testing of the safety shutdown paths (forced checking procedure).		
p9700	SI Motion copy function / SI Mtn copy fct		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: $\mathrm{C}(95), \mathrm{U}, \mathrm{T}$	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0000 hex	00D0 hex	0000 hex
Description:	Setting to start the required copy function.		
	After starting, the corresponding parameters are copied from processor 1 to processor 2. Once copying is complete, the parameter is automatically reset to zero.		
Value:	0 : [00 hex] Copy function ended 208: [DO hex] Start copy function SI basic parameters		
Note:	Re value = D0 hex:		
	The value can only be set if the safety commissioning mode is set and the Safety Integrated password was entered The following parameters are copied after starting the copy function:p9601 --> p9801, p9610 --> 9810, p9650 --> p9850, p9651 --> p9851		

p9701	Acknowledge SI motion data change / Ackn SI Mtn dat		
	Calculated: -		
	Can be changed: C(95), U, T	Scaling: -	Data type: Integer16

r9768[0...7]	SI PROFIsafe receive control words (processor 1) / SI Ps PZD recv P1		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: Unsigned16
CU_G110M_PN	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the received PROFIsafe telegram on processor 1.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
Dependency:	Refer to: r9769		
Note:	The PROFIsafe trailer at the end of the telegram is also displayed (2 words).		
r9769[0...7]	SI PROFIsafe send status words (processor 1) / SI Ps PZD send P1		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: Unsigned16
CU_G110M_PN	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the PROFIsafe telegram to be sent on processor 1.		
Index:	[0] = PZD 1		
	[1] = PZD 2		
	[2] = PZD 3		
	[3] = PZD 4		
	[4] = PZD 5		
	[5] = PZD 6		
	[6] = PZD 7		
	[7] = PZD 8		
Dependency:	Refer to: r9768		
Note:	The PROFIsafe trailer at the end of the telegram is also displayed (2 words).		
r9770[0...3]	SI version drive-integrated safety function (processor 1) / SI version Drv P1		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2802
	Min	Max	Factory setting
	-	-	-
Description:	Displays the Safety Integrated version for the drive-integrated safety functions on processor 1.		
Index:	[0] = Safety Version [1] = Safety Version [2] = Safety Version [3] = Safety Version	ch)	
Note:	Example:		
	r9770[0] $=2, \mathrm{r9770}$ [1	= 1, r9770[3] $=0$-->	2.60.01.00

$\overline{\text { r9773.0... } 31}$	CO/BO: SI status (processor 1 + processor 2) / Sl status P1+P2			
	Access level: 2 Calcula		Data type: U	
	Can be changed: - Scaling		Dyn. index:	
	Units group: - Unit se	on: -	Func. diagra	
	Min Max		Factory sett	
	- -		-	
Description:	Displays the Safety Integrated status on the drive (processor $1+$ processor 2).			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 STO selected in drive	Yes	No	2804
	01 STO active in drive	Yes	No	2804
	31 Shutdown paths must be tested	Yes	No	2810
Note:	This status is formed from the AND operation of the relevant status of the two monitoring channels.			
r9776	SI diagnostics / SI diag			
	Access level: 4	Calculated: -	Data type: Unsigned32	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
			Factory setting	
	- -		-	
Description:	The parameter is used for diagnostics.			
Bit field:	Bit Signal name	1 signal	0 signal	FP
	00 Safety parameter changed POWER ON required	Yes	No	-

Note:	Re bit $00=1:$
	At least one Safety parameter has been changed that will only take effect after a POWER ON.

r9780	SI monitoring clock cycle (processor 1) / SI mon_clk cyc P1		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2802
	Min	Max	Factory setting
	$-[\mathrm{ms}]$	$-[\mathrm{ms}]$	- [ms $]$
Description:	Displays the clock cycle time for the Safety Integrated Basic Functions on processor 1.		

Note:	Information regarding the relationship between monitoring clock cycle and response times can be found in the following references: - SINAMICS S120 Function Manual Safety Integrated - technical documentation for the particular product
r9781[0...1]	Sl checksum to check changes (processor 1) / Sl chg chksm P1
	Access level: 3 Calculated: - Data type: Unsigned32
	Can be changed: - Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	-
Description:	Displays the checksum for tracking changes for Safety Integrated.
	These are additional checksums that are created to track changes (fingerprint for the "safety logbook" functionality) to safety parameters (that are relevant for checksums).
Index:	[0] = SI checksum to track functional changes [1] = SI checksum to track hardware-specific changes
Dependency:	Refer to: p9601, p9799
r9782[0...1]	Sl time stamp to check changes (processor 1) / SI chg t P1
	Access level: 3 Calculated: - Data type: FloatingPoint32
	Can be changed: - Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: -
	Min Max Factory setting
	- [h] - [h] -[h]
Description:	Displays the time stamps for the checksums for tracking changes for Safety Integrated.
	The time stamps for the checksums for tracking changes (fingerprint for the "safety logbook" functionality) made to safety parameters are saved in parameters p9781[0] and p9781[1].
Index:	[0] = SI time stamp for checksum to track functional changes [1] = SI time stamp for checksum to track hardware-specific changes
Dependency:	Refer to: p9601, p9799
r9794[0...19]	SI crosswise comparison list (processor 1) / SI CDC_list P1
	Access level: 3 Calculated: - Data type: Unsigned16
	Can be changed: - Scaling: - Dyn. index: -
	Units group: - Unit selection: - Func. diagram: 2802
	Min Max Factory setting
	- -
Description:	Displays the numbers of the data items that are currently being compared crosswise on processor 1. The content of the list of crosswise-compared data is dependent upon the particular application.
Note:	Example:
	r9794[0] = 1 (monitoring clock cycle)
	r9794[1] = 2 (enable safety functions)
	r9794[2] = 3 (F-DI changeover, tolerance time)
	A complete list of numbers for crosswise-compared data items appears in fault F01611.

r9795 SI diagnostics STOP F (processor 1) / SI diag STOP F P1
Access level: 2 Calculated: - Data type: Unsigned32
Can be changed: - Scaling: - Dyn. index: -
Units group: - Unit selection: - Func. diagram: 2802
Min Max
Factory setting
Description: Displays the number of the cross-compared data item which caused STOP F on processor 1.
Note: A complete list of numbers for crosswise-compared data items appears in fault F01611.

1.2 List of parameters

p9801	SI enable functions integrated in the drive (processor 2) / SI enable fct P2	
CU_G110M_USS	Calculated: -	Data type: Unsigned16

1.2 List of parameters

Bit field:	Bit	Signal name	1 signal	0 signal	FP
	00	STO selected on processor 2	Yes	No	2810
	01	STO active on processor 2	Yes	No	2810
	07	STO terminal state on processor 2 (Basic Functions)	High	Low	-
	09	STOP A cannot be acknowledged active	Yes	No	2802
	10	STOP A active	Yes	No	2802
	15	STOP F active	Yes	No	2802
	16	STO cause: Safety comm. mode	Yes	No	-
	17	STO cause selection via terminal (Basic Functions)	Yes	No	-
	20	STO cause selection PROFIsafe (Basic Functions)	Yes	No	-
Dependency:	Refer to: r9772				
r9872.0... 17	CO/BO: SI status (processor 1) / SI status P1				
CU_G110M_USS	Access level: 2 Calculat			Data type: U	
	Can be changed: - Scaling			Dyn. index:	
	Units group: - Unit selection:			Func. diagra	
	Min Max			Factory sett	
	-			-	
Description:	Displays the Safety Integrated status on processor 2.				
Bit field:	Bit	Signal name	1 signal	0 signal	FP
		STO selected on processor 2	Yes	No	2810
		STO active on processor 2	Yes	No	2810
		STO terminal state on processor 2 (Basic Functions)	High	Low	-
		STOP A cannot be acknowledged active	Yes	No	2802
		STOP A active	Yes	No	2802
		STOP F active	Yes	No	2802
		STO cause: Safety comm. mode	Yes	No	-
		STO cause selection via terminal (Basic Functions)	Yes	No	-
Dependency:	Refe	to: r9772			
p9897	SI Motion pulse suppression failsafe delay time (MM) / SI Mtn IL t_del MM				
	Access level: 3 Calculate			Data type: F	
	Can be changed: C(95) Scaling			Dyn. index:	
	Units group: - Unit selection:			Func. diagra	
	Min Max			Factory sett	
	$0.00[\mu \mathrm{~s}] \quad 800000.00[\mu \mathrm{~s}$			0.00 [$\mu \mathrm{s}$]	
Description:	Sets the delay time for the pulse suppression after bus failure via failsafe values on the Motor Module (e.g. used for ESR).				
Notice:	This parameter is overwritten by the copy function of the safety functions integrated in the drive.				
Note:	Rounding effects can occur in the last decimal place of the parameterized time.				
	ESR: Extended Stop and Retract				
r9898	SI actual checksum SI parameters (processor 2) / SI act_chksm P2				
	Access level: 3 Calculated: -			Data type:	
	Can be changed: - Scaling			Dyn. index:	
	Units group: - Unit selection:			Func. diagra	
	Min Max			Factory sett	
	-				
Description:	Displays the checksum for the Safety Integrated parameters checked using checksums on processor 2 (actual checksum).				
Dependency:	Refer to: r9798, p9899				

p9899	SI setpoint checksum SI parameters (processor 2) / SI setp_chksm P2		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: C(95)	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 2800
	Min	Max	Factory setting
	0000 hex	FFFF FFFF hex	0000 hex
Description:	Sets the checksum for the Safety Integrated parameters checked using checksums on processor 2 (setpoint checksum).		
Dependency:	Refer to: p9799, r9898		

r9925[0...99]	Firmware file incorrect / FW file incorr		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the directory and name of the file whose status as shipped from the factory was identified as impermissible. Refer to: r9926		
Dependency:			
Note:	The directory and name of the file is displayed in the ASCII code.		
r9926	Firmware check status / FW check status		
	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays the status when the firmware is checked when the system is booted. 0 : Firmware not yet checked.		
	1: Check running.		
	2: Check successfully completed.		
	3: Check indicates an error.		
Dependency: Refer to: r9925			
p9930[0...8]	System logbook activation / SYSLOG activation		
	Access level: 4	Calculated: -	Data type: Unsigned8
	Can be changed: U, T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	255	0
Description:	Only for service purpose		
Index:	[0] = System logbook stage (0: Not active)		
	[1] = COM2/COM1 (0: COM2, 1: COM1)		
	[2] = Activate file write (0: Not active)		
	[3] = Display time stamp (0: Not displayed)[4...7] = Reserved		
	[8] = System logbook file size (stages, each 10 kB)		
Notice:	Before powering down the Control Unit, ensure that the system logbook is switched out (p9930[0] = 0).		
	If writing to the file is activated ($\mathrm{p} 9930[2]=1$), writing to the file must be de-activated again before switching off the Control Unit $(\mathrm{p} 9930[2]=0)$ in order to ensure that the system logbook has been completely written to the file.		

p9931[0...129]	System logbook module selection / SYSLOG mod select.			
	Access level: 4	Calculated: -	Data type: Unsigned32	
	Can be changed: U, T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	0000 hex	FFFF FFFF hex	0000 hex	
Description:	Only for service purposes.			
p9932	Save system logbook EEPROM / SYSLOG EEPROM save			
	Access level: 4	Calculated: -	Data type: Unsigned8	
	Can be changed: U, T	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	0	255	0	
Description:	Only for service purposes.			
r9935.0	BO: POWER ON delay signal / POWER ON t_delay			
	Access level: 4	Calculated: -	Data type: Unsigned8	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	-	-	-	
Description:	Display and binector output for a delay after POWER ON.			
	After power-on, binector output r9935.0 is set with the start of the first sampling time and is again reset after approx. 100 ms .			
Bit field:	Bit Signal name 00 POWER ON delay signal	1 signal High	0 signal Low	FP
r9975[0...7]	System utilization measured / Sys util meas			
	Access level: 4	Calculated: -	Data type: FloatingPoint32	
	Can be changed: -	Scaling: -	Dyn. index: -	
	Units group: -	Unit selection: -	Func. diagram: -	
	Min	Max	Factory setting	
	- [\%]	- [\%]		
Description:	Displays the measured system utilization.			
	The higher the value displayed, the higher the system utilization.			
Index:	[0] = Computing time utilization (min)			
	[1] = Computing time utilization (averaged)			
	[2] = Computing time utilization (max)			
	[3] = Largest total utilization (min)			
	[4] = Largest total utilization (averaged)			
	[5] = Largest total utilization (max)			
	[6] = Reserved			
	[7] = Reserved			
Dependency:	Refer to: r9976			
Note:	Re index 3 ... 5:			
	The total utilizations are determined using all sampling times used. The largest total utilizations are mapped here. The sampling time with the largest total utilization is displayed in r9979.			
	Total utilization:			
	Computing time load of sampling time involved including load from higher-priority sampling times (interrupts).			

p20030[0...3]	BI: AND 0 inputs / AND 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10,11,12,13$ of instance AND 0 of the AND function block.		
Index:	[0] = Input IO		
	[1] = Input 11		
	[2] = Input I2		
	[3] = Input I3		
r20031	BO: AND 0 output Q / AND 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10$ \& 11 \& 12 \& I3 of instance AND 0 of the AND function block.		
p20032	AND 0 run-time group / AND 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance AND 0 of the AND function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20033	AND 0 run sequence / AND 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	0	32000	10
Description:	Setting parameter for the run sequence of instance AND 0 within the run-time group set in p20032.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20034[0...3]	BI: AND 1 inputs / AND 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10,11,12,13$ of instance AND 1 of the AND function block.		

1.2 List of parameters

p20044	AND 3 run-time group / AND 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance AND 3 of the AND function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		

p20045	AND 3 run sequence / AND 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7210
	Min	Max	Factory setting
	0	32000	40

Description: Setting parameter for the run sequence of instance AND 3 within the run-time group set in p20044.
Note: The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.

p20046[0...3]	BI: OR O inputs / OR O inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	0

Description: Sets the signal source of input quantities $10, I 1, I 2, I 3$ of instance OR 0 of the OR function block.
[0] = Input IO
[1] = Input I1
[2] = Input I2
[3] = Input I3

r20047	BO: OR O output Q / OR O output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	-	Factory setting
	-	-	
Description:	Display parameter for binary quantity $Q=I 0\|I 1\| I 2 \mid I 3$ of instance OR 0 of the OR function block.		

p20048	OR O run-time group / OR O RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance OR 0 of the OR function block is to be called.		

p20053	OR 1 run sequence / OR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	32000	Factory setting
	0	70	
Description:	Setting parameter for the run sequence of instance OR 1 within the run-time group set in p20052.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20054[0...3]	BI: OR 2 inputs / OR 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10, I 1, I 2, I 3$ of instance OR 2 of the OR function block. [0] = Input 10		
Index:			
	$\begin{aligned} & {[0]=\text { Input IO }} \\ & {[1]=\text { Input I1 }} \end{aligned}$		
	[2] = Input 12		
	[3] = Input 13		
r20055	BO: OR 2 output Q / OR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10\|11\| 12 \mid 13$ of instance OR 2 of the OR function block.		

p20056	OR 2 run-time group / OR 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance OR 2 of the OR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	$\begin{array}{ll}\text { 4: } & \text { Run-time group } 4 \\ \text { 5: } & \text { Run-time group } 5\end{array}$		
	6: Run-time group 6		
	9999: Do not calculate		
p20057	OR 2 run sequence / OR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	0	32000	80
Description:	Setting parameter for the run sequence of instance OR 2 within the run-time group set in p20056.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20058[0...3]	BI: OR 3 inputs / OR 3 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10, I 1, I 2, I 3$ of instance OR 3 of the OR function block.		
Index:	[0] = Input 10		
	[1] = Input 11		
	[2] = Input I2		
	[3] = Input I3		
r20059	BO: OR 3 output Q / OR 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity $\mathrm{Q}=10\|11\| 12 \mid 13$ of instance OR 3 of the OR function block.		
p20060	OR 3 run-time group / OR 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance OR 3 of the OR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: \quad Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20061	OR 3 run sequence / OR 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7212
	Min	Max	Factory setting
	0	32000	90
Description:	Setting parameter for the run sequence of instance OR 3 within the run-time group set in p20060.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20062[0...3]	BI: XOR 0 inputs / XOR 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10,11,12,13$ of instance XOR 0 of the XOR function block.		

1.2 List of parameters

Index:	$\begin{aligned} & {[0]=\text { Input IO }} \\ & {[1]=\text { Input IS }} \\ & {[2]=\text { Input I2 }} \\ & {[3]=\text { Input I3 }} \end{aligned}$		
r20063	BO: XOR 0 outp	output Q	
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter fo	Q of instance XOR	tion block.

p20064	XOR 0 run-time group / XOR 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance XOR 0 of the XOR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20065	XOR 0 run sequence / XOR 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	0	32000	110
Description:	Setting parameter for the run sequence of instance XOR 0 within the run-time group set in p20064.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20066[0...3]	BI: XOR 1 inputs / XOR 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $10, I 1, I 2, I 3$ of instance XOR 1 of the XOR function block.		
Index:	$[0]=$ Input IO		
	$[1]=$ Input 11		
	$[2]=$ Input 2		
	$[3]=$ Input 13		

p20072	XOR 2 run-time group	2 RTG	
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance XOR 2 of the XOR function block is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20073	XOR 2 run sequence / XOR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	0	32000	130
Description:	Setting parameter for the run sequence of instance XOR 2 within the run-time group set in p20072.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20074[0...3]	BI: XOR 3 inputs / XOR 3 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities IO, I1, I2, I3 of instance XOR 3 of the XOR function block.		
Index:	[0] = Input IO		
	[1] = Input I1		
	[2] = Input I2		
	[3] = Input I3		
r20075	BO: XOR 3 output Q / XOR 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity Q of instance XOR 3 of the XOR function block.		
p20076	XOR 3 run-time group / XOR 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance XOR 3 of the XOR function block is to be called.		

Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20077	XOR 3 run sequence / XOR 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7214
	Min	Max	Factory setting
	0	32000	140
Description:	Setting parameter for the run sequence of instance XOR 3 within the run-time group set in p20076.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20078	BI: NOT 0 input I / NOT 0 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity I of instance NOT 0 of the inverter.		
r20079	BO: NOT 0 inverted output / NOT 0 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the	tput of instance NO	
p20080	NOT 0 run-time group / NOT 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 0 of the inverter is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20081	NOT 0 run sequence / NOT 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	160
Description:	Setting parameter for the run sequence of instance NOT 0 within the run-time group set in p20080.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20082	BI: NOT 1 input I / NOT 1 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity l of instance NOT 1 of the inverter.		
r20083	BO: NOT 1 inverted output / NOT 1 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for	tput of instance NO	
p20084	NOT 1 run-time group / NOT 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 1 of the inverter is to be called.		
Value:	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4 5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20085	NOT 1 run sequence / NOT 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	170
Description:	Setting parameter for the run sequence of instance NOT 1 within the run-time group set in p20084.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20086	BI: NOT 2 input I/ NOT 2 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity I of instance NOT 2 of the inverter.		
r20087	BO: NOT 2 inverted output / NOT 2 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 2 of the inverter.		
p20088	NOT 2 run-time group / NOT 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 2 of the inverter is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20089	NOT 2 run sequence / NOT 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	180
Description:	Setting parameter for the run sequence of instance NOT 2 within the run-time group set in p20088.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20090	BI: NOT 3 input I/ NOT 3 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity I of instance NOT 3 of the inverter.		

1.2 List of parameters

r20091	BO: NOT 3 inverted output / NOT 3 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 3 of the inverter.		
p20092	NOT 3 run-time group / NOT 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 3 of the inverter is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20093	NOT 3 run sequence / NOT 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	190
Description:	Setting parameter for the	ce of instance NOT 3 w	me group set in p20092.
Note:	The function blocks with a sequence value.	sequence value are cal	function blocks with a higher run
p20094[0...3]	CI: ADD 0 inputs / ADD 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance ADD 0 of the adder.		
Index:	[0] = Input X0		
	[1] = Input X1		
	[2] = Input X2		
	[3] = Input X3		
r20095	CO: ADD 0 output Y / ADD 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	$-\quad$	-
Description:	Display parameter for the output quantity $\mathrm{Y}=\mathrm{X} 0+\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$ of instance ADD 0 of the adder.		

p20101	ADD 1 run sequence / ADD 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	220
Description:	Setting parameter for the run sequence of instance ADD 1 within the run-time group set in p20100.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20102[0...1]	CI: SUB 0 inputs / SUB 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoi
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of minuend X 1 and subtrahend X 2 of instance SUB 0 of the subtractor.$\begin{aligned} & {[0]=\text { Minuend X1 }} \\ & {[1]=\text { Subtrahend X2 }} \end{aligned}$		
r20103	CO: SUB 0 difference Y / SUB 0 difference Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the difference $\mathrm{Y}=\mathrm{X} 1-\mathrm{X} 2$ of instance SUB 0 of the subtractor.		

p20104	SUB 0 run-time group / SUB 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance SUB 0 of the subtractor is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calcula		
p20105	SUB 0 run sequence / SUB 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	240
Description:	Setting parameter for the run sequence of instance SUB 0 within the run-time group set in p20104.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20106[0...1]	CI: SUB 1 inputs / SUB 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of minuend X1 and subtrahend X2 of instance SUB 1 of the subtractor.$\begin{aligned} & {[0]=\text { Minuend X1 }} \\ & {[1]=\text { Subtrahend X2 }} \end{aligned}$		
Index:			
r20107	CO: SUB 1 difference Y / SUB 1 difference Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the difference $\mathrm{Y}=\mathrm{X} 1-\mathrm{X} 2$ of instance SUB 1 of the subtractor.		
p20108	SUB 1 run-time group / SUB 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance SUB 1 of the subtractor is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20109	SUB 1 run sequence / SUB 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	250
Description:	Setting parameter for the run sequence of instance SUB 1 within the run-time group set in p20108.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20110[0...3]	CI: MUL 0 inputs / MUL 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-		0
Description:	Sets the signal source of the factors $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance MUL 0 of the multiplier.		
Index:	$\begin{aligned} & {[0]=\text { Factor X0 }} \\ & {[1]=\text { Factor X1 }} \\ & {[2]=\text { Factor X2 }} \\ & {[3]=\text { Factor X3 }} \end{aligned}$		

1.2 List of parameters

r20111	CO: MUL 0 product Y / MUL 0 product Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the product $\mathrm{Y}=\mathrm{X} 0$ * $\mathrm{X} 1{ }^{*} \mathrm{X} 2$ * X 3 of instance MUL 0 of the multiplier.		
p20112	MUL 0 run-time group / MUL 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance MUL 0 of the multiplier is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20113	MUL 0 run sequence / MUL 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	0	32000	270
Description:	Setting parameter for the run sequence of instance MUL 0 within the run-time group set in p20112.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20114[0...3]	CI: MUL 1 inputs / MUL 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the factors $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance MUL 1 of the multiplier.		
Index:	[0] = Factor X0		
	[1] = Factor X1		
	[2] = Factor X2		
	[3] = Factor X3		
r20115	CO: MUL 1 product Y / MUL 1 product Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the product $Y=X 0$ * $\mathrm{X} 1{ }^{*} \mathrm{X} 2$ * X 3 of instance MUL 1 of the multiplier.		

p20116	MUL 1 run-time group / MUL 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance MUL 1 of the multiplier is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20117	MUL 1 run sequence / MUL 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	0	32000	280
Description:	Setting parameter for the run sequence of instance MUL 1 within the run-time group set in p20116.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20118[0...1]	CI: DIV 0 inputs / DIV 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of dividend X 1 and divisor X 2 of instance DIV 0 of the divider.		
Index:	[0] = Dividend X0		
$\overline{\text { r20119[0...2] }}$	CO: DIV 0 quotient / DIV 0 quotient		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for quotients $Y=X 1 / X 2$, integer number quotients YIN , and division remainder MOD $=(Y-Y I N) x$ X 2 of instance DIV 0 of the divider.		
Index:	[0] = Quotient Y		
	[1] = Integer number quotient YIN		
	[2] = Div remainder MOD		
r20120	BO: DIV 0 divisor is zero QF / DIV 0 divisor=0 QF		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the signal QF that the divisor X2 of instance DIV 0 of the divider is zero.$\mathrm{X} 2=0.0=>\text { QF }=1$		

p20126	DIV 1 run-time group / DIV 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance DIV 1 of the divider is to be called.		
Value:	5: Run-time group 5		
	$\begin{array}{ll}\text { 6: } & \text { Run-time group } 6 \\ \text { 9999: } & \text { Do not calculate }\end{array}$		
p20127	DIV 1 run sequence / DIV 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7222
	Min	Max	Factory setting
	0	32000	310
Description:	Setting parameter for the run sequence of instance DIV 1 within the run-time group set in p20126.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20128	CI: AVA 0 input X / AVA 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the input quantity X of instance AVA 0 of the absolute value generator with sign evaluation.		
r20129	CO: AVA 0 output Y / AVA 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
			-
Description:	Display parameter for output quantity Y of instance AVA 0 of the absolute value generator with sign evaluation.		
r20130	BO: AVA 0 input negative SN / AVA 0 input neg SN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
			-
Description:	Display parameter for signal SN that the input quantity X of instance AVA 0 of the absolute value generator with sign evaluation is negative.$X<0.0 \Rightarrow>S N=1$		

p20131	AVA 0 run-time group / AVA 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance AVA 0 of the absolute value generator with sign evaluation is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20132	AVA 0 run sequence / AVA 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	0	32000	340
Description:	Setting parameter for the run sequence of instance AVA 0 within the run-time group set in p20131.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20133	CI: AVA 1 input X / AVA 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the input quantity X of instance AVA 1 of the absolute value generator with sign evaluation.		
r20134	CO: AVA 1 output Y / AVA 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Y of instance AVA 1 of the absolute value generator with sign evaluation.		
r20135	BO: AVA 1 input negative SN / AVA 1 input neg SN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for signal SN that the input quantity X of instance AVA 1 of the absolute value generator with sign evaluation is negative.$\mathrm{X}<0.0=>\mathrm{SN}=1$		

p20136	AVA 1 run-time group / AVA 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance AVA 1 of the absolute value generator with sign evaluation is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20137	AVA 1 run sequence / AVA 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7224
	Min	Max	Factory setting
	0	32000	350
Description:	Setting parameter for the run sequence of instance AVA 1 within the run-time group set in p20136.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20138	BI: MFP 0 input pulse I / MFP 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance MFP 0 of the pulse generator.		
p20139	MFP 0 pulse duration in ms / MFP 0 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 0 of the pulse generator.		
r20140	BO: MFP 0 output Q / MFP 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance MFP 0 of the pulse generator.		

p20141	MFP 0 run-time group / MFP 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 0 of the pulse generator is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20142	MFP 0 run sequence / MFP 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	370
Description:	Setting parameter for the run sequence of instance MFP 0 within the run-time group set in p20141.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20143	BI: MFP 1 input pulse I / MFP 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance MFP 1 of the pulse generator.		
p20144	MFP 1 pulse duration in ms / MFP 1 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 1 of the pulse generator.		
r20145	BO: MFP 1 output Q / MFP 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance MFP 1 of the pulse generator.		
p20146	MFP 1 run-time group / MFP 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 1 of the pulse generator is to be called.		

Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20147	MFP 1 run sequence / MFP 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	380
Description:	Setting parameter for the run sequence of instance MFP 1 within the run-time group set in p20146.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20148	BI: PCL 0 input pulse I / PCL 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
		-	0
Description:	Sets the signal source for the input pulse I of instance PCL 0 of the pulse shortener.		
p20149	PCL 0 pulse duration in ms / PCL 0 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance PCL 0 of the pulse shortener.		
r20150	BO: PCL 0 output Q / PCL 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
		-	-
Description:	Display parameter for output pulse Q of instance PCL 0 of the pulse shortener.		
p20151	PCL 0 run-time group / PCL 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PCL 0 of the pulse shortener is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

1.2 List of parameters

p20152	PCL O run sequence / PCL O RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	400
Description:	Setting parameter for the run sequence of instance PCL 0 within the run-time group set in p20151.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20153	BI: PCL 1 input pulse I/PCL 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	-	Factory setting
Description:	-	0	
	Sets the signal source for the input pulse I of instance PCL 1 of the pulse shortener.		

p20154	PCL 1 pulse duration in ms / PCL 1 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Factory setting	
	0.00		0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance PCL 1 of the pulse shortener.		

r20155	BO: PCL 1 output Q / PCL 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	
Description:	Display parameter for output pulse Q of instance PCL 1 of the pulse shortener.		
p20156	PCL 1 run-time group / PCL 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999

Description:	Setting parameter for the run-time group in which the instance PCL 1 of the pulse shortener is to be called.
Value:	$5: \quad$ Run-time group 5
	$6:$
	2999:

p20157

PCL 1 run sequence / PCL 1 RunSeq

Can be changed: T
Units group: -
Min Max
032000

Data type: Unsigned16
Dyn. index: -
Func. diagram: 7230
Factory setting
410

Description: Setting parameter for the run sequence of instance PCL 1 within the run-time group set in p20156.

p20163	BI: PDE 1 input pulse I / PDE 1 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 1 of the closing delay device.		
p20164	PDE 1 pulse delay time in ms / PDE 1 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 1 of the closing delay device.		
r20165	BO: PDE 1 output Q / PDE 1 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	pareter	-	倍
Description:	Display parameter for output pulse Q of instance PDE 1 of the closing delay device.		
p20166	PDE 1 run-time group / PDE 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 1 of the closing delay device is to be called		
Value:	6: Run-time group 6 9999: Do not calculate		
p20167	PDE 1 run sequence / PDE 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
Description:	Setting parameter for	ce of instance PDE	e group set in p20166.
Note:	The function blocks w sequence value.	sequence value are	function blocks with a higher run
p20168	BI: PDF 0 input pulse I / PDF 0 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
			0
Description:	Sets the signal source for the input pulse I of instance PDF 0 of the breaking delay device.		

1.2 List of parameters

r20180	BO: PST 0 output Q / PST 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance PST 0 of the pulse extension element.		
p20181	PST 0 run-time group / PST 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PST 0 of the pulse extension element is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20182	PST 0 run sequence / PST 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	0	7999	490
Description:	Setting parameter for the run sequence of instance PST 0 within the run-time group set in p20181.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20183[0...1]	BI: PST 1 inputs / PST 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
			0
Description: Index:	Sets the signal source for input pulse I and the reset input R of instance PST 1 of the pulse extension element.$\begin{aligned} & {[0]=\text { Input pulse I }} \\ & {[1]=\text { Reset input } R} \end{aligned}$		
p20184	PST 1 pulse duration in ms / PST 1 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7234
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance PST 1 of the pulse extension element.		

1.2 List of parameters

1.2 List of parameters

1.2 List of parameters

r20205	BO: DFR 1 inverted output QN / DFR 1 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output QN of instance DFR 1 of the D flipflop.		
p20206	DFR 1 run-time group / DFR 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance DFR 1 of the D flipflop is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20207	DFR 1 run sequence / DFR 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	32000	560
Description:	Setting parameter for the run-time group of instance DFR 1 within the run-time group set in p20206.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20208[0...1]	BI: BSW 0 inputs / BSW 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $I 0$ and $I 1$ of instance BSW 0 of the binary changeover switch. [0] = Input IO		
Index:	$\begin{aligned} & {[0]=\text { Input IO }} \\ & {[1]=\text { Input I1 }} \end{aligned}$		
p20209	BI: BSW 0 switch setting I / BSW 0 sw_setting		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-		0
Description:	Sets the signal source of the switch setting I of instance BSW 0 of the binary changeover switch.		

r20210	BO: BSW 0 output Q / BSW 0 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Q of instance BSW 0 of the binary changeover switch.		
p20211	BSW 0 run-time group / BSW 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance BSW 0 of the binary changeover switch is to be called		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20212	BSW 0 run sequence / BSW 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	0	7999	580
Description:	Setting parameter for the run sequence of instance BSW 0 within the run-time group set in p20211.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20213[0...1]	BI: BSW 1 inputs / BSW 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
		-	0
Description: Index:	Sets the signal source of input quantities 10 and $I 1$ of instance BSW 1 of the binary changeover switch.$\begin{aligned} & {[0]=\text { Input IO }} \\ & {[1]=\text { Input I1 }} \end{aligned}$		
p20214	BI: BSW 1 switch setting I / BSW 1 sw_setting		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the switch setting I of instance BSW 1 of the binary changeover switch.		

1.2 List of parameters

r20220	CO: NSW 0 output Y / NSW 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output quantity Y of instance NSW 0 of the numeric changeover switch.		
p20221	NSW 0 run-time group / NSW 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance NSW 0 of the numeric changeover switch is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20222	NSW 0 run sequence / NSW 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	0	32000	610
Description:	Setting parameter for the run sequence of instance NSW 0 within the run-time group set in p20221.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20223[0...1]	CI: NSW 1 inputs / NSW 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantities X0 and X1 of instance NSW 1 of the numeric changeover switch.$\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \end{aligned}$		
p20224	BI: NSW 1 switch setting I / NSW 1 sw_setting		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7250
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of the switch setting I of instance NSW 1 of the numeric changeover switch.		

1.2 List of parameters

1.2 List of parameters

p20236	CI: LIM 1 input X / LIM 1 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance LIM 1 of the limiter.		
p20237	LIM 1 upper limit value LU / LIM 1 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the upper limit value LU of instance LIM 1 of the limiter.		
p20238	LIM 1 lower limit value LL / LIM 1 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for	value LL of instance LIM	
r20239	CO: LIM 1 output Y / LIM 1 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the limited output quantity Y of instance LIM 1 of the limiter.		
r20240	BO: LIM 1 input quantity at the upper limit QU / LIM 1 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LIM 1 of limiter QU (upper limit reached), i.e. QU $=1$ for $\mathrm{X}>=\mathrm{LU}$.		

r20241	BO: LIM 1 input quantity at the lower limit QL / LIM 1 QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	-	Factory setting
	-	-	
Description:	Display parameter of instance LIM 1 of limiter QL (lower limit reached), i.e. $\mathrm{QL}=1$ for $\mathrm{X}<=\mathrm{LL}$.		

p20242	LIM 1 run-time group / LIM 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance LIM 1 of the limiter is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20243	LIM 1 run sequence / LIM 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7260
	Min	Max	Factory setting
	0	32000	650
Description:	Setting parameter for the run sequence of instance LIM 1 within the run-time group set in p20242.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20244[0...1]	CI: PT1 0 inputs / PT1 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X and of setting value SV of instance PT1 0 of the smoothing element.		
	[1] = Setting value SV		
p20245	BI: PT1 0 accept setting value S / PT1 0 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the "accept setting value" signal of instant PT1 0 of the smoothing element.		
p20246	PT1 0 smoothing time constant in ms / PT1 0 T_smooth ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	0.00	340.28235E36	0.00
Description:	Sets the smoothing time constant T in milliseconds of instance PT1 0 of the smoothing element.		

1.2 List of parameters

r20247	CO: PT1 0 output Y / PT1 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the smoothed output quantity Y of instance PT1 0 of the smoothing element.		
p20248	PT1 0 run-time group / PT1 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PT1 0 of the smoothing element is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20249	PT1 0 run sequence / PT1 0 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	0	32000	670
Description:	Setting parameter for the run sequence of instance PT1 0 within the run-time group set in p20248.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20250[0...1]	CI: PT1 1 inputs / PT1 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
Description: Index:	Sets the signal source of input quantity X and of setting value SV of instance PT1 1 of the smoothing element.$\begin{aligned} & {[0]=\text { Input X }} \\ & {[1]=\text { Setting value SV }} \end{aligned}$		
p20251	BI: PT1 1 accept setting value S / PT1 1 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7262
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the "accept setting value" signal of instant PT1 1 of the smoothing element.		

p20257	INT 0 upper limit value LU / INT 0 upper lim LU		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the upper limit value LU of instance INT 0 of the integrator.		
p20258	INT 0 lower limit value LL / INT 0 lower lim LL		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the lower limit va	ce INT 0 of the integrator	
p20259	INT 0 integrating time constant in ms / INT 0 T_Integr ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	0.00	340.28235E36	0.00
Description:	Sets the integrating tim	in milliseconds of instance	integrator.
p20260	BI: INT 0 accept setting value S / INT 0 acc set val		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source	setting value" signal of in	of the integrator.
r20261	CO: INT 0 output Y / INT 0 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for If $L L>=L U$, then the o	Y of instance INT 0 of th = LU.	
r20262	BO: INT 0 integrator at the upper limit QU / INT 0 QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the signal QU that output quantity Y of instance INT 0 of the integrator has reached the upper limit value LU.		

p20268	LVM 0 interval limit L / LVM 0 limit L		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the interval limit L of instance LVM 0 of the double-sided limiter.		
p20269	LVM 0 hyst HY / LVM 0 hyst HY		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235 E 36	0.0000
Description:	Setting parameter for hysteresis HY of instance LVM 0 of the double-sided limiter.		
r20270	BO: LVM 0 input quantity above interval QU / LVM $0 \times$ above QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of $X \text { is }>=M+L-H Y \text {. }$	of the double-sided	uantity X was at least once X
r20271	BO: LVM 0 input quantity within interval QM / LVM $0 \times$ x within QM		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LVM 0 of the double-sided limiter that the input quantity X lies within the interval.		
r20272	BO: LVM 0 input quantity below interval QL / LVM 0 X below QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
		-	-
Description:	Display parameter of instance LVM 0 of the double-sided limiter that input quantity X was at least once $X<M-L$ and X is $<=M-L+H Y$.		
p20273	LVM 0 run-time group / LVM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance LVM 0 of the double-sided limiter is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20274	LVM O run sequence / LVM O RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	0	7999	720
Description:	Setting parameter for the run sequence of instance LVM 0 within the run-time group set in p20273.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20275

CI: LVM 1 input X / LVM 1 input X
Access level: 3 Calculated:

Can be changed: T
Units group: -
Min
-
Sets the signal source of input quantity X of instance LVM 1 of the double-sided limiter

p20276	LVM 1 interval average value M / LVM 1 avg value M		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the interval average M of instance LVM 1 of the double-sided limiter.		
p20277	LVM 1 interval limit L / LVM 1 limit L		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for the interval limit L of instance LVM 1 of the double-sided limiter.		
p20278	LVM 1 hyst HY / LVM 1 hyst HY		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Setting parameter for hysteresis HY of instance LVM 1 of the double-sided limiter.		

r20279	BO: LVM 1 input quantity above interval QU / LVM 1 X above QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	-	Factory setting
Description:	-	-	
	Display parameter of instance LVM 1 of the double-sided limiter that input quantity X was at least once $X>M+L$ and		

1.2 List of parameters

r20280	BO: LVM 1 input quantity within interval QM / LVM 1 X within QM		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter of instance LVM 1 of the double-sided limiter that the input quantity X lies within the interval.		
r20281	BO: LVM 1 input quantity below interval QL / LVM 1 X below QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	-	-	
Description:	Display parameter of instance LVM 1 of the double-sided limiter that input quantity X was at least once $X<M-L$ and X is $<=M-L+H Y$.		
p20282	LVM 1 run-time group / LVM 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance LVM 1 of the double-sided limiter is to be called.		
Value:	6: Run-time group 6 9999: Do not calculate		
p20283	LVM 1 run sequence / LVM 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7270
	Min	Max	Factory setting
	0	7999	730
Description:	Setting parameter for the run sequence of instance LVM 1 within the run-time group set in p20282.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20284	CI: DIF 0 input X / DIF 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7264
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity X of instance DIF 0 of the differentiating element.		

p20302	NOT 4 run-time group / NOT 4 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which the instance NOT 4 of the inverter is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20303	NOT 4 run sequence / NOT 4 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	770
Description: Note:	Setting parameter for the run sequence of instance NOT 4 within the run-time group set in p20302.		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20304	BI: NOT 5 input I/ NOT 5 input I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantity l of instance NOT 5 of the inverter.		
r20305	BO: NOT 5 inverted output / NOT 5 inv output		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the inverted output of instance NOT 5 of the inverter.		
p20306	NOT 5 run-time group / NOT 5 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	1	9999	9999
Description: Value:	Setting parameter for the run-time group in which the instance NOT 5 of the inverter is to be called.		
	1: Run-time group 1 2: Run-time group 2 3: Run-time group 3 4: Run-time group 4		

	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20307	NOT 5 run sequence / NOT 5 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7216
	Min	Max	Factory setting
	0	32000	780
Description:	Setting parameter for the run sequence of instance NOT 5 within the run-time group set in p20306.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20308[0...3]	CI: ADD 2 inputs / ADD 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source of input quantities $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ of instance ADD 2 of the adder.		
Index:			
	[1] = Input X1		
	[2] = Input X2		
	[3] = Input X3		
r20309	CO: ADD 2 output Y / ADD 2 output Y		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the output quantity $\mathrm{Y}=\mathrm{X} 0+\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3$ of instance ADD 2 of the adder.		
p20310	ADD 2 run-time group / ADD 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance ADD 2 of the adder is to be called.		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20311	ADD 2 run sequence / ADD 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7220
	Min	Max	Factory setting
	0	32000	800
Description:	Setting parameter for the run sequence of instance ADD 2 within the run-time group set in p20310.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20312[0...1]	CI: NCM 0 inputs / NCM 0 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantities $\mathrm{X0}$ and X 1 of instance NCM 0 of the numeric comparator.$\begin{aligned} & {[0]=\text { Input X0 }} \\ & {[1]=\text { Input X1 }} \end{aligned}$		
r20313	BO: NCM 0 output QU / NCM 0 output QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QU of instance NCM 0 of the numeric comparator. QU is only set if $\mathrm{X0}>\mathrm{X}$ 1.		
r20314	BO: NCM 0 output QE / NCM 0 output QE		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QE of instance NCM 0 of the numeric comparator. QE is only set if $\mathrm{X0}=\mathrm{X} 1$.		
r20315	BO: NCM 0 output QL / NCM 0 output QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QL of instance NCM 0 of the numeric comparator. QL is only set if $\mathrm{X} 0<\mathrm{X} 1$.		
p20316	NCM 0 run-time group / NCM 0 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance NCM 0 of the numeric comparator is to be called		
Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		

p20317	NCM O run sequence / NCM O RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	0	32000	820
Description:	Setting parameter for the run sequence of instance NCM 0 within the run-time group set in p20316.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		
	sequence value.		

p20318[0...1]	CI: NCM 1 inputs / NCM 1 inputs		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source of input quantities X0 and X1 of instance NCM 1 of the numeric comparator.$\begin{aligned} {[0] } & =\operatorname{Input} X 0 \\ {[1] } & =\operatorname{Input} X 1 \end{aligned}$		
r20319	BO: NCM 1 output QU / NCM 1 output QU		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QU of instance NCM 1 of the numeric comparator. QU is only set if X0 > X1.		
r20320	BO: NCM 1 output QE / NCM 1 output QE		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QE of instance NCM 1 of the numeric comparator. $Q E$ is only set if $X 0=X 1$.		
r20321	BO: NCM 1 output QL / NCM 1 output QL		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for binary quantity QL of instance NCM 1 of the numeric comparator. QL is only set if $\mathrm{X0}$ < X 1 .		

p20322	NCM 1 run-time group / NCM 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance NCM 1 of the numeric comparator is to be called. 5: Run-time group 5		
Value:			
	6: Run-time group 6		
	9999: Do not calculate		
p20323	NCM 1 run sequence / NCM 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7225
	Min	Max	Factory setting
	0	32000	830
Description:	Setting parameter for the run sequence of instance NCM 1 within the run-time group set in p20322.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20324[0...1]	BI: RSR 2 inputs / RSR 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for set input S and reset input R of instance RSR 2 of the RS flipflop.		
Index:	$[0]=\text { Set } S$		
r20325	BO: RSR 2 output Q / RSR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output Q of instance RSR 2 of the RS flipflop		
r20326	BO: RSR 2 inverted output QN / RSR 2 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for inverted output QN of instance RSR 2 of the RS flipflop.		

p20327	RSR 2 run-time group / RSR 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance RSR 2 of the RS flipflop is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20328	RSR 2 run sequence / RSR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	7999	850
Description: Note:	Setting parameter for the run sequence of instance RSR 2 within the run-time group set in p20327.		
	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20329[0...3]	BI: DFR 2 inputs / DFR 2 inputs		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	0
Description: Index:	Sets the signal source for trigger input I, D input D, set input S, and reset input R of instance $D F R 2$ of the D flipflop.$\begin{aligned} & {[0]=\text { Trigger input I }} \\ & {[1]=\text { Dinput } D} \\ & {[2]=\text { Set S }} \\ & {[3]=\text { Reset R }} \end{aligned}$		
r20330	BO: DFR 2 output Q / DFR 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output Q of instance DFR 2 of the D flipflop.		
r20331	BO: DFR 2 inverted output QN / DFR 2 inv outp QN		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the	put QN of instance	fflop.

p20332	DFR 2 run-time group / DFR 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	1	9999	9999
Description:	Setting parameter for the run-time group in which instance DFR 2 of the D flipflop is to be called.		
Value:	1: Run-time group 1		
	2: Run-time group 2		
	3: Run-time group 3		
	4: Run-time group 4		
	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20333	DFR 2 run sequence / DFR 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7240
	Min	Max	Factory setting
	0	32000	870
Description:	Setting parameter for the run-time group of instance DFR 2 within the run-time group set in p20332.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20334	BI: PDE 2 input pulse I / PDE 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 2 of the closing delay device.		
p20335	PDE 2 pulse delay time in ms / PDE 2 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 2 of the closing delay device.		
r20336	BO: PDE 2 output Q / PDE 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-		-
Description:	Display parameter for output pulse Q of instance PDE 2 of the closing delay device.		

p20337	PDE 2 run-time group / PDE 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 2 of the closing delay device is to be called.		
Value:	5: Run-time group 5		
	6: Run-time group 6		
	9999: Do not calculate		
p20338	PDE 2 run sequence / PDE 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0	32000	890
Description:	Setting parameter for the run sequence of instance PDE 2 within the run-time group set in p20337.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20339	BI: PDE 3 input pulse I / PDE 3 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDE 3 of the closing delay device.		
p20340	PDE 3 pulse delay time in ms / PDE 3 t_del ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse delay time T in milliseconds of instance PDE 3 of the closing delay device.		
r20341	BO: PDE 3 output Q / PDE 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	-	-	
Description:	Display parameter for output pulse Q of instance PDE 3 of the closing delay device.		
p20342	PDE 3 run-time group / PDE 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PDE 3 of the closing delay device is to be called.		

Value:	5: Run-time group 5 6: Run-time group 6 9999: Do not calculate		
p20343	PDE 3 run sequence / PDE 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7232
	Min	Max	Factory setting
	0	32000	900
Description:	Setting parameter for the run sequence of instance PDE 3 within the run-time group set in p20342.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run		

p20344	BI: PDF 2 input pulse I/PDF 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	-	Factory setting
	-	0	
Description:	Sets the signal source for the input pulse I of instance PDF 2 of the breaking delay device.		

p20348	PDF 2 run sequence / PDF 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0	32000	920
Description:	Setting parameter for the run sequence of instance PDE 2 within the run-time group set in p20347.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20349	BI: PDF 3 input pulse I / PDF 3 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance PDF 3 of the breaking delay device.		
p20350	PDF 3 pulse extension time in ms / PDF 3 t_ext ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse extension time T in milliseconds of instance PDF 3 of the breaking delay device.		
r20351	BO: PDF 3 output Q / PDF 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
		-	-
Description:	Display parameter for	of instance PDF 3	ay device.
p20352	PDF 3 run-time group / PDF 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance PDF 3 of the breaking delay device is to be called.		
Value:	$\begin{array}{ll} \text { 5: } & \text { Run-time grol } \\ \text { 6: } & \text { Run-time grou } \\ \text { 9999: } & \text { Do not calcula } \end{array}$		
p20353	PDF 3 run sequence / PDF 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7233
	Min	Max	Factory setting
	0	32000	930
Description:	Setting parameter for the run sequence of instance PDE 3 within the run-time group set in p20352.		

1.2 List of parameters

Note: \quad| The function blocks with a lower run sequence value are calculated before function blocks with a higher run |
| :--- |
| sequence value. |

p20354	BI: MFP 2 input pulse I / MFP 2 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance MFP 2 of the pulse generator.		
p20355	MFP 2 pulse duration in ms / MFP 2 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index:
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 2 of the pulse generator.		

r20356	BO: MFP 2 output Q / MFP 2 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance MFP 2 of the pulse generator.		
p20357	MFP 2 run-time group / MFP 2 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 2 of the pulse generator is to be called.		
Value:	5: Run-time gro 6: Run-time gro 9999: Do not calcul		
p20358	MFP 2 run sequence / MFP 2 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0	32000	950
Description:	Setting parameter for the run sequence of instance MFP 2 within the run-time group set in p20357.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		

p20359	BI: MFP 3 input pulse I/ MFP 3 inp_pulse I		
	Access level: 3	Calculated: -	Data type: U32 / Binary
	Can be changed: T	Scaling: -	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	0
Description:	Sets the signal source for the input pulse I of instance MFP 3 of the pulse generator.		
p20360	MFP 3 pulse duration in ms / MFP 3 pulse_dur ms		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	0.00	5400000.00	0.00
Description:	Setting parameter for pulse duration T in milliseconds of instance MFP 3 of the pulse generator.		
r20361	BO: MFP 3 output Q / MFP 3 output Q		
	Access level: 3	Calculated: -	Data type: Unsigned32
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for output pulse Q of instance MFP 3 of the pulse generator.		
p20362	MFP 3 run-time group / MFP 3 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which the instance MFP 3 of the pulse generator is to be called.		
Value:	5: Run-time group 5		
p20363	MFP 3 run sequence / MFP 3 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7230
	Min	Max	Factory setting
		32000	960
Description:	Setting parameter for the run sequence of instance MFP 3 within the run-time group set in p20362.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p20372	CI: PLI 0 input X / PLI 0 input X		
	Access level: 3	Calculated: -	Data type: U32 / FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-		0
Description:	Sets the signal source for input X of the polyline (20 breakpoints) of instance PLI 0 .		

1.2 List of parameters

r20373	CO: PLI 0 outpu	utput Y	
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: -	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-	-	-
Description:	Display parameter for the output quantity Y of the polyline (20 breakpoints) of instance PLI 0		
p20374[0..19]	PLI 0 X-coordinate, A breakpoint / PLI 0 X-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the x -coordinates for the breakpoints (AO...A19) of the polyline (20 breakpoints) of instance PLI 0 . [0] = Breakpoint 0		
Index:			
	[2] = Breakpoint 2		
	[3] = Breakpoint 3		
	[4] = Breakpoint 4		
	[5] = Breakpoint 5		
	[6] = Breakpoint 6		
	[7] = Breakpoint 7		
	[8] = Breakpoint 8		
	[9] = Breakpoint 9		
	[10] = Breakpoint 10		
	[11] = Breakpoint 11		
	[12] = Breakpoint 12		
	[13] = Breakpoint 13		
	[14] = Breakpoint 14		
	[15] = Breakpoint 15		
	[16] = Breakpoint 16		
	[17] = Breakpoint 17		
	[18] = Breakpoint 18		
	[19] = Breakpoint 19		
p20375[0...19]	PLI 0 Y-coordinate, B breakpoint / PLI 0 Y-coordinate		
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index:-
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
Description:	Sets the y-coordinates for the breakpoints (B0...B19) of the polyline (20 breakpoints) of instance PLI 0 .		
Index:	[0] = Breakpoint 0		
	[1] = Breakpoint 1		
	[2] = Breakpoint 2		
	[3] = Breakpoint 3		
	[4] = Breakpoint 4		
	[5] = Breakpoint 5		
	[6] = Breakpoint 6		
	[7] = Breakpoint 7		
	[8] = Breakpoint 8		
	[9] = Breakpoint 9		
	[10] = Breakpoint 10		
	[11] = Breakpoint 11		
	[12] = Breakpoint 12		
	[13] = Breakpoint 13		
	[14] = Breakpoint 14 [15] = Breakpoint 15		

1.2 List of parameters

[6] = Breakpoint 6
[7] = Breakpoint 7
[8] = Breakpoint 8
[9] = Breakpoint 9
[10] = Breakpoint 10
[11] = Breakpoint 11
[12] $=$ Breakpoint 12
[13] = Breakpoint 13
[14] = Breakpoint 14
[15] = Breakpoint 15
[16] = Breakpoint 16
[17] = Breakpoint 17
[18] $=$ Breakpoint 18
[19] = Breakpoint 19

p20381[0..19]	PLI 1 Y-coordina	ooint / PLI 1 Y-co	
	Access level: 3	Calculated: -	Data type: FloatingPoint32
	Can be changed: T	Scaling: PERCENT	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	-340.28235E36	340.28235E36	0.0000
	Sets the y-coordinates for the breakpoints (B0...B19) of the polyline (20 breakpoints) of instance PLI 1.		
Index:	$[0]=\text { Breakpoint } 0$		
	$\text { [1] = Breakpoint } 1$		
	$\text { [2] = Breakpoint } 2$		
	$\text { [3] = Breakpoint } 3$		
	[4] = Breakpoint 4		
	[5] = Breakpoint 5		
	[6] = Breakpoint 6		
	[7] = Breakpoint 7		
	[8] = Breakpoint 8		
	[9] = Breakpoint 9		
	[10] = Breakpoint 10		
	[11] = Breakpoint 11		
	[12] = Breakpoint 12		
	[13] = Breakpoint 13		
	[14] = Breakpoint 14		
	[15] = Breakpoint 15		
	[16] = Breakpoint 16		
	[17] = Breakpoint 17		
	[18] = Breakpoint 18		
	[19] = Breakpoint 19		

p20382	PLI 1 run-time group / PLI 1 RTG		
	Access level: 3	Calculated: -	Data type: Integer16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	5	9999	9999
Description:	Setting parameter for the run-time group in which instance PLI 1 of the polyline is to be called		
Value:	$5: \quad$ Run-time group 5		
	$6: \quad$ Run-time group 6		
	$9999:$ Do not calculate		

p20383	PLI 1 run sequence / PLI 1 RunSeq		
	Access level: 3	Calculated: -	Data type: Unsigned16
	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: 7226
	Min	Max	Factory setting
	0	32000	990
Description:	Setting parameter for the run sequence of instance PLI 1 within the run-time group set in p20382.		
Note:	The function blocks with a lower run sequence value are calculated before function blocks with a higher run sequence value.		
p60022	PROFIsafe telegram selection / Ps telegram_sel		
CU_G110M_DP	Access level: 3	Calculated: -	Data type: Unsigned16
CU_G110M_PN	Can be changed: T	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	0	998	998
Description:	Sets the PROFIsafe telegram number.		
Value:	$0:$ No PROFIsafe telegram selected 30: PROFIsafe standard telegram 30, PZD-1/1 998: Compatibility mode (as for firmware version < 4.6)		
Note:	For p9601.3 = p9801.3 = 1 (PROFIsafe enabled), the following variants exist when parameterizing PROFIsafe telegram 30:		
	- p9611 = p9811 = 998 and p60022 = 0		
	- p9611 $=$ p9811 $=998$ and p60022 $=30$		
	- p9611 $=$ p9811 $=30$ and p60022 $=30$		
r61000[0...239] PROFINET Name of Station / PN Name			
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
		-	-
Description:	Displays PROFINET Name of Station.		
Notice:	An ASCII table (excerpt) can be found, for example, in the appendix to the List Manual.		
r61001[0...3]	PROFINET IP of Station / PN IP of Station		
CU_G110M_PN	Access level: 3	Calculated: -	Data type: Unsigned8
	Can be changed: -	Scaling: -	Dyn. index: -
	Units group: -	Unit selection: -	Func. diagram: -
	Min	Max	Factory setting
	-	-	-
Description:	Displays PROFINET IP of Station.		

1.3 Parameters for data sets

1.3.1 Command Data Sets (CDS)

Product: G110M, Version: 4602113, Language: eng, Type: CDS
p0641[0...n] CI: Current limit variable / Curr lim var
p0820[0...n] BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0821[0...n] BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1
p0840[0...n] BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n] BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n] BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n] BI: Enable operation/inhibit operation / Operation enable
p0854[0...n] BI: Control by PLC/no control by PLC / Master ctrl by PLC
p0855[0...n] BI: Unconditionally release holding brake / Uncond open brake
p0856[0...n] BI: Speed controller enable / n_ctrl enable
p0858[0...n] BI: Unconditionally close holding brake / Uncond close brake
p0881[0...n] BI: Quick stop signal source 1 / QS s_src 1
p0882[0...n] BI: Quick stop signal source 2 / QS s_src 2
p0883[0...n] BI: Quick stop override / QS override
p0886[0...n] Quick stop signal source evaluation type / QS s_src eval
p1000[0...n] Speed setpoint selection / n_set sel
p1020[0...n] BI: Fixed speed setpoint selection Bit $0 / n$ _set_fixed Bit 0
p1021[0...n] BI: Fixed speed setpoint selection Bit $1 / n$ n_set_fixed Bit 1
p1022[0...n] BI: Fixed speed setpoint selection Bit $2 / n _$set_fixed Bit 2
p1023[0...n] BI: Fixed speed setpoint selection Bit 3 / n_set_fixed Bit 3
p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise
p1036[0...n] BI: Motorized potentiometer lower setpoint / Mop lower
p1039[0...n] BI: Motorized potentiometer inversion / MotP inv
p1041[0...n] BI: Motorized potentiometer manual/automatic / Mop manual/auto
p1042[0...n] CI: Motorized potentiometer automatic setpoint / Mop auto setpoint
p1043[0...n] BI: Motorized potentiometer accept setting value / MotP acc set val
p1044[0...n] CI: Motorized potentiometer setting value / Mop set val
p1051[0...n] CI: Speed limit RFG positive direction of rotation / n_limit RFG pos
p1052[0...n] CI: Speed limit RFG negative direction of rotation / n_limit RFG neg
p1055[0...n] BI: Jog bit $0 / \mathrm{Jog}$ bit 0
p1056[0...n] BI: Jog bit $1 / \mathrm{Jog}$ bit 1
p1070[0...n] CI: Main setpoint / Main setpoint
p1071[0...n] CI: Main setpoint scaling / Main setp scal
p1075[0...n] CI: Supplementary setpoint / Suppl setp
p1076[0...n] CI: Supplementary setpoint scaling / Suppl setp scal
p1085[0...n] Cl: Speed limit in positive direction of rotation / n_limit pos
p1088[0...n] CI: Speed limit in negative direction of rotation / n_limit neg
p1098[0...n] Cl: Skip speed scaling / n_skip scal
p1106[0...n] CI: Minimum speed signal source / n_min s_src
p1108[0...n] BI: Total setpoint selection / Total setp sel
p1109[0...n] Cl: Total setpoint / Total setp
p1110[0...n] BI: Inhibit negative direction / Inhib neg dir
p1111[0...n] BI: Inhibit positive direction / Inhib pos dir
p1113[0...n] BI: Setpoint inversion / Setp inv
p1122[0...n] BI: Bypass ramp-function generator / Bypass RFG
p1138[0...n] CI: Up ramp scaling / Up ramp scaling

p1139[0...n]	CI: Down ramp scaling / Down ramp scaling
p1140[0...n]	BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable
p1141[0...n]	BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n]	BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1143[0...n]	BI: Ramp-function generator, accept setting value / RFG accept set v
p1144[0...n]	Cl : Ramp-function generator setting value / RFG setting value
p1155[0...n]	Cl : Speed controller speed setpoint $1 / \mathrm{n}$ _ctrl n_set 1
p1160[0...n]	CI: Speed controller speed setpoint 2 / n_ctrl n_set 2
p1201[0...n]	BI: Flying restart enable signal source / Fly_res enab S_src
p1230[0...n]	BI : DC braking activation / DC brake act
p1330[0...n]	CI: U/f control independent voltage setpoint / Uf U_set independ.
p1352[0...n]	CI : Motor holding brake starting frequency signal source / Brake f_start
p1455[0...n]	CI: Speed controller P gain adaptation signal / n_ctr adapt_sig Kp
p1466[0...n]	CI: Speed controller P-gain scaling / n_ctrl Kp scal
p1475[0...n]	Cl : Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB
p1476[0...n]	BI: Speed controller hold integrator / n_ctrl integ stop
p1477[0...n]	BI: Speed controller set integrator value / n_ctrl integ set
p1478[0...n]	CI : Speed controller integrator setting value / n_ctr integ_setVal
p1479[0...n]	Cl : Speed controller integrator setting value scaling / n_ctrl I_val scal
p1486[0...n]	CI : Droop compensation torque / Droop M_comp
p1492[0...n]	BI: Droop feedback enable / Droop enable
p1500[0...n]	Torque setpoint selection / M_set sel
p1501[0...n]	BI: Change over between closed-loop speed/torque control / Changeov n/M_ctrl
p1503[0...n]	CI: Torque setpoint / M_set
p1511[0...n]	CI: Supplementary torque 1 / M_suppl 1
p1512[0...n]	Cl : Supplementary torque 1 scaling / M_suppl 1 scal
p1513[0...n]	CI : Supplementary torque 2 / M_suppl 2
p1522[0...n]	CI : Torque limit upper / M_max upper
p1523[0...n]	CI : Torque limit lower / M_max lower
p1528[0...n]	CI : Torque limit upper scaling / M_max upper scal
p1529[0...n]	Cl : Torque limit lower scaling / M_max lower scal
p1552[0...n]	Cl : Torque limit upper scaling without offset / M_max up w/o offs
p1554[0...n]	CI : Torque limit lower scaling without offset / M_max low w/o offs
p2103[0...n]	BI: 1. Acknowledge faults / 1. Acknowledge
p2104[0...n]	BI: 2. Acknowledge faults / 2. Acknowledge
p2105[0...n]	BI: 3. Acknowledge faults / 3. Acknowledge
p2106[0...n]	BI: External fault 1 / External fault 1
p2107[0...n]	BI: External fault 2 / External fault 2
p2108[0...n]	BI: External fault 3 / External fault 3
p2112[0...n]	BI: External alarm 1 / External alarm 1
p2116[0...n]	BI: External alarm 2 / External alarm 2
p2117[0...n]	BI: External alarm 3 / External alarm 3
p2144[0...n]	BI: Motor stall monitoring enable (negated) / Mot stall enab neg
p2148[0...n]	BI: RFG active / RFG active
p2151[0...n]	CI : Speed setpoint for messages/signals / n_set for msg
p2200[0...n]	BI: Technology controller enable / Tec_ctrl enable
p2220[0...n]	BI: Technology controller fixed value selection bit 0 / Tec_ctrl sel bit 0
p2221[0...n]	BI: Technology controller fixed value selection bit 1 / Tec_ctrl sel bit 1
p2222[0...n]	BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2
p2223[0...n]	BI: Technology controller fixed value selection bit 3 / Tec_ctrl sel bit 3
p2235[0...n]	BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise
p2236[0...n]	BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2253[0...n]	Cl : Technology controller setpoint 1 / Tec_ctrl setp 1
p2254[0...n]	Cl : Technology controller setpoint 2 / Tec_ctrl setp 2
p2264[0...n]	CI: Technology controller actual value / Tec_ctrl act val

p2286[0...n]	$\mathrm{BI}:$ Hold technology controller integrator / Tec_ctr integ stop
p2289[0...n]	$\mathrm{CI}:$ Technology controller pre-control signal / Tec_ctrl prectrl
p2296[0...n]	$\mathrm{CI}:$ Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	$\mathrm{CI}:$ Technology controller maximum limit signal source / Tec_ctrMaxLimS_src
p2298[0...n]	$\mathrm{CI}:$ Technology controller minimum limit signal source / Tec_ctrl min_I s_s
p2299[0...n]	$\mathrm{CI}:$ Technology controller limit offset / Tech_ctrl lim offs
p3111[0...n]	$\mathrm{BI}:$ External fault 3 enable / Ext fault 3 enab
p3112[0...n]	$\mathrm{BI}:$ External fault 3 enable negated / Ext flt 3 enab neg
p3230[0...n]	$\mathrm{CI}:$ Load monitoring speed actual value / Load monit n_act
p3232[0...n]	$\mathrm{BI}:$ Load monitoring failure detection / Load_moni fail_det
p3330[0...n]	$\mathrm{BI}: 2 / 3$ wire control command $1 / 2 / 3$ wire cmd 1
p3331[0...n]	$\mathrm{BI}: 2 / 3$ wire control command $2 / 2 / 3$ wire cmd 2
p3332[0...n]	$\mathrm{BI}: 2 / 3$ wire control command $3 / 2 / 3$ wire cmd 3
p3340[0...n]	$\mathrm{BI}:$ Limit switch start / Lim switch start
p3342[0...n]	$\mathrm{BI}:$ Limit switch plus / Lim switch plus
p3343[0...n]	$\mathrm{BI}:$ Limit switch minus / Lim switch minus

1.3.2 Drive Data Sets (DDS)

Product: G110M, Version: 4602113, Language: eng, Type: DDS p0340[0...n] Automatic calculation motor/control parameters / Calc auto par p0640[0...n] Current limit / Current limit p1001[0...n] CO: Fixed speed setpoint $1 / n _$set_fixed 1 p1002[0...n] CO: Fixed speed setpoint $2 / n _$set_fixed 2
p1003[0...n] CO: Fixed speed setpoint 3 / n_set_fixed 3
p1004[0...n] CO: Fixed speed setpoint $4 / n _$set_fixed 4
p1005[0...n] CO: Fixed speed setpoint $5 / n _$set_fixed 5
p1006[0...n] CO: Fixed speed setpoint $6 / n _$set_fixed 6
p1007[0...n] CO: Fixed speed setpoint $7 / n _$set_fixed 7
p1008[0...n] CO: Fixed speed setpoint $8 / n _$set_fixed 8
p1009[0...n] CO: Fixed speed setpoint $9 / n _$set_fixed 9
p1010[0...n] CO: Fixed speed setpoint 10 /n_set_fixed 10
p1011[0...n] CO: Fixed speed setpoint 11 /n_set_fixed 11
p1012[0...n] CO: Fixed speed setpoint $12 / n _$set_fixed 12
p1013[0...n] CO: Fixed speed setpoint 13 /n_set_fixed 13
p1014[0...n] CO: Fixed speed setpoint 14 /n_set_fixed 14
p1015[0...n] CO: Fixed speed setpoint 15 / n_set_fixed 15 p1030[0...n] Motorized potentiometer configuration / Mop configuration
p1037[0...n] Motorized potentiometer maximum speed / MotP n_max
p1038[0...n] Motorized potentiometer minimum speed / MotP n_min
p1040[0...n] Motorized potentiometer starting value / Mop start value
p1047[0...n] Motorized potentiometer ramp-up time / Mop ramp-up time
p1048[0...n] Motorized potentiometer ramp-down time / Mop ramp-down time
p1058[0...n] Jog 1 speed setpoint / Jog 1 n_set
p1059[0...n] Jog 2 speed setpoint / Jog 2 n_set
p1063[0...n] Speed limit setpoint channel / n_limit setp
p1080[0...n] Minimum speed / n_min
p1082[0...n] Maximum speed / n_max
p1083[0...n] CO: Speed limit in positive direction of rotation / n_limit pos
p1086[0...n] CO: Speed limit in negative direction of rotation / n_limit neg
p1091[0...n] Skip speed $1 / n _$skip 1
p1092[0...n] Skip speed 2 / n_skip 2
p1093[0...n] Skip speed 3 /n_skip 3
p1094[0...n] Skip speed 4 /n_skip 4

1.3 Parameters for data sets

p1101[0...n]
p1120[0...n]
p1121[0...n]
p1123[0...n]
p1127[0...n]
p1130[0...n]
p1131[0...n]
p1134[0...n]
p1135[0...n]
p1136[0...n]
p1137[0...n]
p1145[0...n]
p1148[0...n
p1200[0...
p1202[0...n]
p1203[0...n]
p1226[0...n]
p1240[0...n]
p1243[0...
p1245[0...
p1247[0...
p1249[0...
p1250[0...
p1251[0...
p1252[0...
p1255[0...
p1256[0...n]
p1257[0...
p1280[0...n
p1283[0...
p1284[0...
p1288[0...
p1290[0...
p1291[0...n]
p1292[0...n]
p1300[0...
p1302[0...
p1310[0...
p1311[0...n
p1312[0...
p1320[0...
p1321[0...n
p1322[0...n]
p1323[0...n]
p1324[0...n]
p1325[0...n]
p1326[0...n]
p1327[0...n]
p1333[0...n]
p1334[0....
p1335[0...n]
p1336[0...n]
p1338[0...
p1340[0...n] I_max frequency controller proportional gain / I_max_ctrl Kp
Skip speed bandwidth / n_skip bandwidth
Ramp-function generator ramp-up time / RFG ramp-up time
Ramp-function generator ramp-down time / RFG ramp-down time
Ramp-function generator minimum ramp-up time / RFG t_RU min
Ramp-function generator minimum ramp-down time / RFG t_RD min
Ramp-function generator initial rounding-off time / RFG t_start_round
Ramp-function generator final rounding-off time / RFG t_end_delay
Ramp-function generator rounding-off type / RFG round-off type
OFF3 ramp-down time / OFF3 t_RD
OFF3 initial rounding-off time / RFGOFF3 t_strt_rnd
OFF3 final rounding-off time / RFG OFF3 t_end_del
Ramp-function generator tracking intensity. / RFG track intens
Ramp-function gen. tolerance for ramp-up and ramp-down active / RFG tol HL/RL act
Flying restart operating mode / FlyRest op_mode
Flying restart search current / FlyRest I_srch
Flying restart search rate factor / FlyRst v_Srch Fact
Threshold for zero speed detection / n_standst n_thresh
Vdc controller configuration (vector control) / Vdc_ctr config vec
Vdc_max controller dynamic factor / Vdc_max dyn_factor
Vdc_min controller switch-in level (kinetic buffering) / Vdc_min on_level
Vdc_min controller dynamic factor (kinetic buffering) / Vdc_min dyn_factor
Vdc_max controller speed threshold / Vdc_max n_thresh
Vdc controller proportional gain / Vdc_ctrl Kp
Vdc controller integral time / Vdc_ctrl Tn
Vdc controller rate time / Vdc_ctrl t_rate
Vdc_min controller time threshold / Vdc_min t_thresh
Vdc_min controller response (kinetic buffering) / Vdc_min response
Vdc_min controller speed threshold / Vdc_min n_thresh
Vdc controller or Vdc monitoring configuration (U/f) / Vdc_ctr config U/f
Vdc_max controller dynamic factor (U/f) / Vdc_max dyn_factor
Vdc_max controller time threshold (U/f) / Vdc_max t_thresh
Vdc_max controller feedback coupling factor ramp-fct. gen. (U/f) / Vdc_max factor RFG
Vdc controller proportional gain (U/f) / Vdc_ctrl Kp
Vdc controller integral time (U/f) / Vdc ctrl Tn
Vdc controller rate time (U/f) / Vdc_ctrl t_rate
Open-loop/closed-loop control operating mode / Op/cl-lp ctrl_mode
U/f control configuration / U/f config
Voltage boost permanent / U_boost perm
Voltage boost at acceleration / U_boost accelerate
Voltage boost when starting / U_boost starting
U/f control programmable characteristic frequency 1 / Uf char f1
U/f control programmable characteristic voltage 1 / Uf char U1
U/f control programmable characteristic frequency 2 / Uf char f2
U/f control programmable characteristic voltage 2 / Uf char U2
U/f control programmable characteristic frequency 3 / Uf char f3 U/f control programmable characteristic voltage 3 / Uf char U3 U/f control programmable characteristic frequency 4 / Uf char f4 U/f control programmable characteristic voltage 4 / Uf char U4 U/f control FCC starting frequency / U/f FCC f_start U/f control slip compensation starting frequency / Slip comp start Slip compensation scaling / Slip comp scal Slip compensation limit value / Slip comp lim val U/f mode resonance damping gain / Uf Res_damp gain U/f mode resonance damping filter time constant / Uf Res_damp T

p1341[0...n]	I_max frequency controller integral time / I_max_ctrl Tn
p1345[0...n]	I_max voltage controller proportional gain / __max_U_ctrl Kp
p1346[0...n]	I_max voltage controller integral time / I_max_U_ctrl Tn
p1349[0...n]	U/f mode resonance damping maximum frequency / Uf res_damp f_max
p1350[0...n]	Soft starting / Soft starting
p1351[0...n]	CO: Motor holding brake starting frequency / Brake f_start
p1400[0...n]	Speed control configuration / n_ctrl config
p1401[0...n]	Flux control configuration / Flux ctrl config
p1402[0...n]	Closed-loop current control and motor model configuration / I_ctrl config
p1416[0...n]	Speed setpoint filter 1 time constant / n_set_filt 1 T
p1452[0...n]	Speed controller speed actual value smoothing time (SLVC) / n_C n_act T_s SLVC
p1456[0...n]	Speed controller P gain adaptation lower starting point / n_ctrl AdaptKpLow
p1457[0...n]	Speed controller P gain adaptation upper starting point / n_ctrl AdaptKp up
p1458[0...n]	Adaptation factor lower / Adapt_factor lower
p1459[0...n]	Adaptation factor upper / Adapt_factor upper
p1461[0...n]	Speed controller Kp adaptation speed upper scaling / n_ctr Kp n up scal
p1463[0...n]	Speed controller Tn adaptation speed upper scaling / n_ctr Tn n up scal
p1464[0...n]	Speed controller adaptation speed lower / n_ctrl n lower
p1465[0...n]	Speed controller adaptation speed upper / n_ctrl n upper
p1470[0...n]	Speed controller encoderless operation P-gain / n_ctrl SLVC Kp
p1472[0...n]	Speed controller encoderless operation integral time / n_ctrl SLVC Tn
p1487[0...n]	Droop compensation torque scaling / Droop M_comp scal
p1488[0...n]	Droop input source / Droop input source
p1489[0...n]	Droop feedback scaling / Droop scaling
p1496[0...n]	Acceleration pre-control scaling / a_prectrl scal
p1499[0...n]	Accelerating for torque control scaling / a for M_ctrl scal
p1514[0...n]	Supplementary torque 2 scaling / M_suppl 2 scal
p1517[0...n]	Accelerating torque smoothing time constant / M_accel T_smooth
p1520[0...n]	CO: Torque limit upper / M_max upper
p1521[0...n]	CO: Torque limit lower / M_max lower
p1524[0...n]	CO: Torque limit upper/motoring scaling / M_max up/mot scal
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal
p1530[0...n]	Power limit motoring / P_max mot
p1531[0...n]	Power limit regenerative / P_max gen
p1553[0...n]	Stall limit scaling / Stall limit scal
p1570[0...n]	CO: Flux setpoint / Flex setp
p1573[0...n]	Flux threshold value magnetizing / Flux thresh magnet
p1574[0...n]	Voltage reserve dynamic / U_reserve dyn
p1580[0...n]	Efficiency optimization / Efficiency opt.
p1582[0...n]	Flux setpoint smoothing time / Flux setp T_smth
p1584[0...n]	Field weakening operation flux setpoint smoothing time / Field weak T_smth
p1594[0...n]	Field-weakening controller P gain / Field_ctrl Kp
p1596[0...n]	Field weakening controller integral-action time / Field_ctrl Tn
p1610[0...n]	Torque setpoint static (SLVC) / M_set static
p1611[0...n]	Supplementary accelerating torque (SLVC) / M_suppl_accel
p1616[0...n]	Current setpoint smoothing time / I_set T_smooth
p1654[0...n]	Curr. setpoint torque-gen. smoothing time field weakening range / Isq_s T_smth FW
p1703[0...n]	Isq current controller pre-control scaling / Isq_ctr_prectrScal
p1715[0...n]	Current controller P gain / __ctrl Kp
p1717[0...n]	Current controller integral-action time / I_ctrl Tn
p1726[0...n]	Quadrature arm decoupling scaling / Transv_decpl scal
p1727[0...n]	Quadrature arm decoupling at voltage limit scaling / TrnsvDecpIVmaxScal
p1730[0...n]	Isd controller integral component shutdown threshold / Isd_ctr I_compDeac
p1731[0...n]	Isd controller combination current time component / Isd ctrl iCombi T1
p1740[0...n]	Gain resonance damping for encoderless closed-loop control / Gain res_damp

1.3 Parameters for data sets

p1745[0...n]
p1749[0...n]
p1750[0...n]
p1755[0...n]
p1758[0...n]
p1759[0...n]
p1764[0...n]
p1767[0...n]
p1774[0...n]
p1775[0...n]
p1780[0...n]
p1784[0...n]
p1785[0...n]
p1786[0...
r1787[0...n
p1800[0...n]
p1802[0...n]
p1803[0...n]
p1806[0...n]
p1820[0....
p1959[0...
p2140[0....
p2141[0...
p2142[0...n]
p2149[0...
p2150[0...
p2152[0....
p2153[0...
p2155[0...n]
p2156[0...n]
p2157[0...
p2158[0...
p2159[0....
p2160[0...
p2161[0....
p2162[0...n]
p2163[0...
p2164[0...n]
p2166[0...n]
p2167[0...n]
p2170[0...n]
p2171[0...n]
p2172[0...n]
p2173[0....
p2174[0...
p2175[0...
p2176[0....
p2177[0....
p2178[0...n]
p2179[0...n]
p2180[0...
p2181[0....
p2182[0....
p2183[0....
p2184[0...n]

Motor model error threshold stall detection / MotMod ThreshStall
Motor model increase changeover speed encoderless operation / Incr n_chng no enc
Motor model configuration / MotMod config
Motor model changeover speed encoderless operation / MotMod n_chgSnsorl
Motor model changeover delay time closed/open-loop control / MotMod t cl_op
Motor model changeover delay time open/closed-loop control / MotMod t op_cl
Motor model without encoder speed adaptation Kp / MotMod woE n_adaKp
Motor model without encoder speed adaptation Tn / MotMod woE n_adaTn
Motor model offset voltage compensation alpha / MotMod offs comp A
Motor model offset voltage compensation beta / MotMod offs comp B
Motor model adaptation configuration / MotMod adapt conf
Motor model feedback scaling / MotMod fdbk scal
Motor model Lh adaptation Kp / MotMod Lh Kp
Motor model Lh adaptation integral time / MotMod Lh Tn
Motor model Lh adaptation corrective value / MotMod Lh corr
Pulse frequency setpoint / Pulse freq setp
Modulator mode / Modulator mode
Maximum modulation depth / Modulat depth max
Filter time constant Vdc correction / T_filt Vdc_corr
Reverse the output phase sequence / Outp_ph_seq rev
Rotating measurement configuration / Rot meas config
Hysteresis speed 2 / n_hysteresis 2
Speed threshold $1 / \mathrm{n}$ _thresh val 1
Hysteresis speed 1 / $n _$hysteresis 1
Monitoring configuration / Monit config
Hysteresis speed 3 / n_hysteresis 3
Delay for comparison $\mathrm{n}>\mathrm{n}$ _max / Del $\mathrm{n}>\mathrm{n}$ _max
Speed actual value filter time constant / $n _$act_filt T
Speed threshold $2 /$ n_thresh val 2
On delay comparison value reached / t_on cmpr val rchd
Speed threshold 5 / n_thresh val 5
Delay for n_act comparison with speed threshold value 5 / Del compar n_5
Speed threshold $6 / \mathrm{n}$ _thresh val 6
Delay for $n _$act comparison with speed threshold value 6 / Del compar n_6
Speed threshold $3 / \mathrm{n}$ _thresh val 3
Hysteresis speed n_act > n_max / Hyst n_act>n_max
Speed threshold 4 / n_thresh val 4
Hysteresis speed 4 / n_hysteresis 4
Off delay n_act = n_set / t_del_off n_i=n_so
Switch-on delay n_act = n_set / t_on n_act=n_set
Current threshold value / I_thres
Current threshold value reached delay time / t_del I_thresh rch
DC link voltage threshold value / Vdc thresh val
DC link voltage comparison delay time / t_del Vdc Torque threshold value 1 / M_thresh val 1
Motor blocked speed threshold / Mot lock n_thresh
Torque threshold value comparison delay time / M_thrsh comp T_del
Motor blocked delay time / Mot lock t_del
Motor stalled delay time / Mot stall t_del
Output load identification current limit / Outp_Id iden I_lim
Missing output load delay time / No load t_delay
Load monitoring response / Load monit resp
Load monitoring speed threshold value 1 / n_thresh 1
Load monitoring speed threshold value 2 / n_thresh 2
Load monitoring speed threshold value 3 / n_thresh 3
p2185[0...n] Load monitoring torque threshold 1 upper / M_thresh 1 upper
p2186[0...n] Load monitoring torque threshold 1 lower / M_thresh 1 lower
p2187[0...n] Load monitoring torque threshold 2 upper / M_thresh 2 upper
p2188[0...n] Load monitoring torque threshold 2 lower / M_thresh 2 lower
p2189[0...n] Load monitoring torque threshold 3 upper / M_thresh 3 upper
p2190[0...n] Load monitoring torque threshold 3 lower / M_thresh 3 lower
p2192[0...n] Load monitoring delay time / Load monit t_del
p2193[0...n] Load monitoring configuration / Load monit config
p2194[0...n] Torque threshold value 2 / M_thresh val 2
p2195[0...n] Torque utilization switch-off delay / M_util t_off
p2196[0...n] Torque utilization scaling / M_util scal
p2201[0...n] CO: Technology controller fixed value 1 / Tec_ctrl fix val 1
p2202[0...n] CO: Technology controller fixed value 2 / Tec_ctr fix val 2
p2203[0...n] CO: Technology controller fixed value 3 / Tec_ctr fix val 3
p2204[0...n] CO: Technology controller fixed value 4 / Tec_ctr fix val 4
p2205[0...n] CO: Technology controller fixed value 5 / Tec_ctr fix val 5
p2206[0...n] CO: Technology controller fixed value 6 / Tec_ctr fix val 6
p2207[0...n] CO: Technology controller fixed value 7 / Tec_ctr fix val 7
p2208[0...n] CO: Technology controller fixed value $8 /$ Tec_ctr fix val 8
p2209[0...n] CO: Technology controller fixed value $9 /$ Tec_ctr fix val 9
p2210[0...n] CO: Technology controller fixed value 10 / Tec_ctr fix val 10
p2211[0...n] CO: Technology controller fixed value 11 / Tec_ctr fix val 11
p2212[0...n] CO: Technology controller fixed value 12 / Tec_ctr fix val 12
p2213[0...n] CO: Technology controller fixed value 13 / Tec_ctr fix val 13
p2214[0...n] CO: Technology controller fixed value 14 / Tec_ctr fix val 14
p2215[0...n] CO: Technology controller fixed value 15 / Tec_ctr fix val 15
p2216[0...n] Technology controller fixed value selection method / Tec_ctr FixVal sel
p2230[0...n] Technology controller motorized potentiometer configuration / Tec_ctr mop config
p2237[0...n] Technology controller motorized potentiometer maximum value / Tec_ctrl mop max
p2238[0...n] Technology controller motorized potentiometer minimum value / Tec_ctrl mop min
p2240[0...n] Technology controller motorized potentiometer starting value / Tec_ctrl mop start
p2247[0...n] Technology controller motorized potentiometer ramp-up time / Tec_ctr mop t_r-up
p2248[0...n] Technology controller motorized potentiometer ramp-down time / Tec_ctrMop t_rdown
p2900[0...n] CO: Fixed value 1 [\%] / Fixed value 1 [\%]
p2901[0...n] CO: Fixed value 2 [\%] / Fixed value 2 [\%]
p2930[0...n] CO: Fixed value M [Nm] / Fixed value M [Nm]
p3231[0...n] Load monitoring speed deviation / Load monit n_dev
p3233[0...n] Torque actual value filter time constant / M_act_filt T
p3320[0...n] Fluid flow machine power point 1 / Fluid_mach P1
p3321[0...n] Fluid flow machine speed point 1 / Fluid_mach n1
p3322[0...n] Fluid flow machine power point 2 / Fluid_mach P2
p3323[0...n] Fluid flow machine speed point 2 / Fluid_mach n2
p3324[0...n] Fluid flow machine power point 3 / Fluid_mach P3
p3325[0...n] Fluid flow machine speed point 3 / Fluid_mach n3
p3326[0...n] Fluid flow machine power point 4 / Fluid_mach P4
p3327[0...n] Fluid flow machine speed point 4 / Fluid_mach n4
p3328[0...n] Fluid flow machine power point 5 / Fluid_mach P5
p3329[0...n] Fluid flow machine speed point 5 / Fluid_mach n5
r3925[0...n] Identification final display / Ident final_disp
r3927[0...n] Motor data identification control word / MotID STW
r3928[0...n] Rotating measurement configuration / Rot meas config
r3929[0...n] Motor data identification modulated voltage generation / MotID U_gen mod

1.3 Parameters for data sets

1.3.3 Motor Data Sets (MDS)

Product: G110M, Version: 4602113, Language: eng, Type: MDS p0133[0...n] Motor configuration / Motor config
p0300[0...n] Motor type selection / Mot type sel
p0301[0...n] Motor code number selection / Mot code No. sel
p0304[0...n] Rated motor voltage / Mot U_rated
p0305[0...n] Rated motor current / Mot I_rated
p0307[0...n] Rated motor power / Mot P_rated
p0308[0...n] Rated motor power factor / Mot cos_phi_rated
p0309[0...n] Rated motor efficiency / Mot eta_rated
p0310[0...n] Rated motor frequency / Mot f_rated
p0311[0...n] Rated motor speed / Mot n_rated
r0313[0...n] Motor pole pair number, actual (or calculated) / Mot PolePairNo act
p0314[0...n] Motor pole pair number / Mot pole pair No.
p0320[0...n] Motor rated magnetizing current/short-circuit current / Mot I_mag_rated
p0322[0...n] Maximum motor speed / Mot n_max
p0326[0...n] Motor stall torque correction factor / Mot M_stall_corr
r0330[0...n] Rated motor slip / Mot slip_rated
r0331[0...n] Actual motor magnetizing current/short-circuit current / Mot I_mag_rtd act
r0332[0...n] Rated motor power factor / Mot cos_phi_rated
r0333[0...n] Rated motor torque / Mot M_rated
p0335[0...n] Motor cooling type / Mot cool type
r0337[0...n] Rated motor EMF / Mot EMF_rated
p0341[0...n] Motor moment of inertia / Mot M_mom of inert
p0342[0...n] Ratio between the total and motor moment of inertia / Mot MomInert Ratio
r0343[0...n] Rated motor current identified / Mot I_rated ident
p0344[0...n] Motor weight (for the thermal motor model) / Mot weight th mod
r0345[0...n] Nominal motor starting time / Mot t_start_rated
p0346[0...n] Motor excitation build-up time / Mot t_excitation
p0347[0...n] Motor de-excitation time / Mot t_de-excitat
p0350[0...n] Motor stator resistance cold / Mot R_stator cold
p0352[0...n] Cable resistance / R_cable
p0354[0...n] Motor rotor resistance cold / Mot R_r cold
p0356[0...n] Motor stator leakage inductance / Mot L_stator leak.
p0358[0...n] Motor rotor leakage inductance / Mot L_rot leak
p0360[0...n] Motor magnetizing inductance / Mot Lh
p0362[0...n] Motor saturation characteristic flux 1 / Mot saturat.flux 1
p0363[0...n] Motor saturation characteristic flux 2 / Mot saturat.flux 2
p0364[0...n] Motor saturation characteristic flux 3 / Mot saturat.flux 3
p0365[0...n] Motor saturation characteristic flux 4 / Mot saturat.flux 4
p0366[0...n] Motor saturation characteristic I_mag 1 / Mot sat. I_mag 1
p0367[0...n] Motor saturation characteristic I_mag 2 / Mot sat. I_mag 2
p0368[0...n] Motor saturation characteristic I_mag 3 / Mot sat. I_mag 3
p0369[0...n] Motor saturation characteristic I_mag 4 / Mot sat. I_mag 4
r0370[0...n] Motor stator resistance cold / Mot R_stator cold
r0372[0...n] Cable resistance / Mot R_cable
r0373[0...n] Motor rated stator resistance / Mot R_stator rated
r0374[0...n] Motor rotor resistance cold / Mot R_r cold
r0376[0...n] Rated motor rotor resistance / Mot R_rotor rated
r0377[0...n] Motor leakage inductance total / Mot L_leak total
r0382[0...n] Motor magnetizing inductance transformed / Mot L_magn transf
r0384[0...n] Motor rotor time constant / damping time constant d axis / Mot T_rotor/T_Dd
r0386[0...n] Motor stator leakage time constant / Mot T_stator leak
r0395[0...n] Actual stator resistance / R_stator act
r0396[0...n] Actual rotor resistance / R_rotor act

p0397[0...n]	Angle magnetic decoupling maximum angle / Magn decpl max_ang
p0601[0...n]	Motor temperature sensor type / Mot_temp_sens type
p0604[0...n]	Mot_temp_mod 2/KTY alarm threshold / Mod 2/KTY A thresh
p0605[0...n]	Mot_temp_mod 1/2 threshold / Mod 1/2 threshold
p0606[0...n]	Mot_temp_mod 2/KTY timer / Mod 2/KTY t_timer
p0607[0...n]	Temperature sensor fault timer / Sensor fault time
p0610[0...n]	Motor overtemperature response / Mot temp response
p0612[0...n]	Mot_temp_mod activation / Mot_temp_mod act
p0614[0...n]	Thermal resistance adaptation reduction factor / Therm R_adapt red
p0620[0...n]	Thermal adaptation, stator and rotor resistance / Mot therm_adapt R
p0621[0...n]	Identification stator resistance after restart / Rst_ident Restart
p0622[0...n]	Motor excitation time for Rs_ident after powering up again / t_excit Rs_id
p0625[0...n]	Motor ambient temperature / Mot T_ambient
p0626[0...n]	Motor overtemperature, stator core / Mot T_over core
p0627[0...n]	Motor overtemperature, stator winding / Mot T_over stator
p0628[0...n]	Motor overtemperature rotor winding / Mot T_over rotor
r0630[0...n]	Mot_temp_mod ambient temperature / Mod T_ambient
r0631[0...n]	Mot_temp_mod stator iron temperature / Mod T_stator
r0632[0...n]	Mot_temp_mod stator winding temperature / Mod T_winding
r0633[0...n]	Mot_temp_mod rotor temperature / Mod T_rotor
p0634[0...n]	Q flux flux constant unsaturated / PSIQ KPSI UNSAT
p0635[0...n]	Q flux quadrature axis current constant unsaturated / PSIQ KIQ UNSAT
p0636[0...n]	Q flux direct axis current constant unsaturated / PSIQ KID UNSAT
p0637[0...n]	Q flux flux gradient saturated / PSIQ Grad SAT
p0650[0...n]	Actual motor operating hours / Mot t_oper act
p0651[0...n]	Motor operating hours maintenance interval / Mot t_op maint
p0826[0...n]	Motor changeover motor number / Mot_chng mot No.
p1231[0...n]	DC braking configuration / DCBRK config
p1232[0...n]	DC braking braking current / DCBRK I_brake
p1233[0...n]	DC braking time / DCBRK time
p1234[0...n]	Speed at the start of DC braking / DCBRK n_start
p1909[0...n]	Motor data identification control word / MotID STW
p1999[0...n]	Ang. commutation offset calibr. and PollD scaling / Com_ang_offs scal
r3926[0...n]	Voltage generation alternating base voltage amplitude / U_gen altern base

1.3.4 Power unit data sets (PDS)

Product: G110M, Version: 4602113, Language: eng, Type: PDS p0124[0...n] CU detection via LED / CU detection LED
r0200[0...n] Power unit code number actual / PU code no. act
p0201[0...n] Power unit code number / PU code no
r0203[0...n] Actual power unit type / PU actual type
r0204[0...n] Power unit hardware properties / PU HW property

1.3.5 Encoder data set (EDS)

Product: G110M, Version: 4602113, Language: eng, Type: EDS p0422[0...n] Absolute encoder linear measuring step resolution / Enc abs meas step

$1.4 \quad$ BICO parameters (connectors/binectors)

1.4.1 \quad Binector inputs (BI)

Product: G110M, Version: 4602113, Language: eng, Type: BI
p0730 BI: CU signal source for terminal DO $0 / \mathrm{CU}$ S_src DO 0
p0731 BI: CU signal source for terminal DO 1 / CU S_src DO 1
p0806 BI: Inhibit master control / PcCtrl inhibit
p0810 BI: Command data set selection CDS bit 0 / CDS select., bit 0
p0811 BI: Command data set selection CDS bit 1 / CDS select., bit 1
p0820[0...n] BI: Drive Data Set selection DDS bit 0 / DDS select., bit 0
p0821[0...n] BI: Drive Data Set selection DDS bit 1 / DDS select., bit 1
p0840[0...n] BI: ON / OFF (OFF1) / ON / OFF (OFF1)
p0844[0...n] BI: No coast-down / coast-down (OFF2) signal source 1 / OFF2 S_src 1
p0845[0...n] BI: No coast-down / coast-down (OFF2) signal source 2 / OFF2 S_src 2
p0848[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 1 / OFF3 S_src 1
p0849[0...n] BI: No Quick Stop / Quick Stop (OFF3) signal source 2 / OFF3 S_src 2
p0852[0...n] BI: Enable operation/inhibit operation / Operation enable
p0854[0...n] BI: Control by PLC/no control by PLC / Master ctrl by PLC
p0855[0...n] BI: Unconditionally release holding brake / Uncond open brake
p0856[0...n] BI: Speed controller enable / n_ctrl enable
p0858[0...n] BI: Unconditionally close holding brake / Uncond close brake
p0860
p0881[0...n] BI: Quick stop signal source 1 / QS s_src 1
p0882[0...n] BI: Quick stop signal source 2 / QS s_src 2
p0883[0...n] BI: Quick stop override / QS override
p0897 BI: Parking axis selection / Parking axis se
p1020[0...n] BI: Fixed speed setpoint selection Bit 0 / n_set_fixed Bit 0
p1021[0...n] BI: Fixed speed setpoint selection Bit $1 / n$ nset_fixed Bit 1
p1022[0...n] BI: Fixed speed setpoint selection Bit $2 / n$ _set_fixed Bit 2
p1023[0...n] BI: Fixed speed setpoint selection Bit 3 /n_set_fixed Bit 3
p1035[0...n] BI: Motorized potentiometer setpoint raise / Mop raise
p1036[0...n] BI: Motorized potentiometer lower setpoint / Mop lower
p1039[0...n] BI: Motorized potentiometer inversion / MotP inv
p1041[0...n] BI: Motorized potentiometer manual/automatic / Mop manual/auto
p1043[0...n] BI: Motorized potentiometer accept setting value / MotP acc set val
p1055[0...n] BI: Jog bit $0 / \mathrm{Jog}$ bit 0
p1056[0...n] BI: Jog bit 1 / Jog bit 1
p1108[0...n] BI: Total setpoint selection / Total setp sel
p1110[0...n] BI: Inhibit negative direction / Inhib neg dir
p1111[0...n] BI: Inhibit positive direction / Inhib pos dir
p1113[0...n] BI: Setpoint inversion / Setp inv
p1122[0...n] BI: Bypass ramp-function generator / Bypass RFG
p1140[0...n] BI: Enable ramp-function generator/inhibit ramp-function generator / RFG enable
p1141[0...n] BI: Continue ramp-function generator/freeze ramp-function generator / Continue RFG
p1142[0...n] BI: Enable setpoint/inhibit setpoint / Setpoint enable
p1143[0...n] BI: Ramp-function generator, accept setting value / RFG accept set v
p1201[0...n] BI: Flying restart enable signal source / Fly_res enab S_src
p1230[0...n] BI: DC braking activation / DC brake act
p1476[0...n] BI: Speed controller hold integrator / n_ctrl integ stop
p1477[0...n] BI: Speed controller set integrator value / n_ctrl integ set
p1492[0...n] BI: Droop feedback enable / Droop enable
p1501[0...n] BI: Change over between closed-loop speed/torque control / Changeov n/M_ctrl
p2080[0...15] BI: Binector-connector converter status word 1 / Bin/con ZSW1
p2081[0...15] BI: Binector-connector converter status word 2 / Bin/con ZSW2
p2082[0...15] BI: Binector-connector converter status word 3 / Bin/con ZSW3
p2083[0...15] BI: Binector-connector converter status word 4 / Bin/con ZSW4
p2084[0...15] BI: Binector-connector converter status word 5 / Bin/con ZSW5
p2103[0...n] BI: 1. Acknowledge faults / 1. Acknowledge
p2104[0...n] BI: 2. Acknowledge faults / 2. Acknowledge
p2105[0...n] BI: 3. Acknowledge faults / 3. Acknowledge
p2106[0...n] BI: External fault 1 / External fault 1
p2107[0...n] BI: External fault 2 / External fault 2
p2108[0...n] BI: External fault 3 / External fault 3
p2112[0...n] BI: External alarm 1 / External alarm 1
p2116[0...n] BI: External alarm 2 / External alarm 2
p2117[0...n] BI: External alarm 3 / External alarm 3
p2144[0...n] BI: Motor stall monitoring enable (negated) / Mot stall enab neg
p2148[0...n] BI: RFG active / RFG active
p2200[0...n] BI: Technology controller enable / Tec_ctrl enable
p2220[0...n] BI: Technology controller fixed value selection bit $0 /$ Tec_ctrl sel bit 0
p2221[0...n] BI: Technology controller fixed value selection bit $1 /$ Tec_ctrl sel bit 1
p2222[0...n] BI: Technology controller fixed value selection bit 2 / Tec_ctrl sel bit 2
p2223[0...n] BI: Technology controller fixed value selection bit $3 /$ Tec_ctrl sel bit 3
p2235[0...n] BI: Technology controller motorized potentiometer raise setpoint / Tec_ctrl mop raise
p2236[0...n] BI: Technology controller motorized potentiometer lower setpoint / Tec_ctrl mop lower
p2286[0...n] BI: Hold technology controller integrator / Tec_ctr integ stop
p3111[0...n] BI: External fault 3 enable / Ext fault 3 enab
p3112[0...n] BI: External fault 3 enable negated / Ext flt 3 enab neg
p3232[0...n] BI: Load monitoring failure detection / Load_moni fail_det
p3330[0...n] BI: $2 / 3$ wire control command $1 / 2 / 3$ wire cmd 1
p3331[0...n] BI: $2 / 3$ wire control command $2 / 2 / 3$ wire cmd 2
p3332[0...n] BI: $2 / 3$ wire control command $3 / 2 / 3$ wire cmd 3
p3340[0...n] BI: Limit switch start / Lim switch start
p3342[0...n] BI: Limit switch plus / Lim switch plus
p3343[0...n] BI: Limit switch minus / Lim switch minus
p20030[0...3] BI: AND 0 inputs / AND 0 inputs
p20034[0...3] BI: AND 1 inputs / AND 1 inputs
p20038[0...3] BI: AND 2 inputs / AND 2 inputs
p20042[0...3] BI: AND 3 inputs / AND 3 inputs
p20046[0...3] BI: OR 0 inputs / OR 0 inputs
p20050[0...3] BI: OR 1 inputs / OR 1 inputs
p20054[0...3] BI: OR 2 inputs / OR 2 inputs
p20058[0...3] BI: OR 3 inputs / OR 3 inputs
p20062[0...3] BI: XOR 0 inputs / XOR 0 inputs
p20066[0...3] BI: XOR 1 inputs / XOR 1 inputs
p20070[0...3] BI: XOR 2 inputs / XOR 2 inputs
p20074[0...3] BI: XOR 3 inputs / XOR 3 inputs
p20078 BI: NOT 0 input $1 /$ NOT 0 input I
p20082 BI: NOT 1 input I / NOT 1 input I
p20086 BI: NOT 2 input I / NOT 2 input I
p20090 BI: NOT 3 input I / NOT 3 input I
p20138 BI: MFP 0 input pulse I/ MFP 0 inp_pulse I
p20143 BI: MFP 1 input pulse I/ MFP 1 inp_pulse I
p20148 BI: PCL 0 input pulse I/ PCL 0 inp_pulse I
p20153 BI: PCL 1 input pulse I/ PCL 1 inp_pulse I
p20158 BI: PDE 0 input pulse I/ PDE 0 inp_pulse I
p20163 BI: PDE 1 input pulse I/ PDE 1 inp_pulse I

```
p20168 BI: PDF 0 input pulse I / PDF 0 inp_pulse I
p20173 BI: PDF 1 input pulse I / PDF 1 inp_pulse I
p20178[0...1] BI: PST 0 inputs / PST 0 inputs
p20183[0..1] BI: PST }1\mathrm{ inputs / PST 1 inputs
p20188[0...1] BI: RSR 0 inputs / RSR 0 inputs
p20193[0...1] BI: RSR }1\mathrm{ inputs / RSR 1 inputs
p20198[0...3] BI: DFR 0 inputs / DFR 0 inputs
p20203[0...3] BI: DFR }1\mathrm{ inputs / DFR 1 inputs
p20208[0..1] BI: BSW 0 inputs / BSW 0 inputs
p20209 BI: BSW 0 switch setting I / BSW 0 sw_setting
p20213[0...1] BI: BSW 1 inputs / BSW 1 inputs
p20214 BI: BSW 1 switch setting I / BSW 1 sw_setting
p20219 BI: NSW 0 switch setting I / NSW 0 sw_setting
p20224 BI: NSW 1 switch setting I / NSW 1 sw_setting
p20245 BI: PT1 0 accept setting value S / PT1 0 acc set val
p20251 BI: PT1 1 accept setting value S / PT1 1 acc set val
p20260 BI: INT 0 accept setting value S / INT 0 acc set val
p20300 BI: NOT 4 input I / NOT 4 input I
p20304 BI: NOT }5\mathrm{ input I / NOT }5\mathrm{ input I
p20324[0...1] BI: RSR 2 inputs / RSR 2 inputs
p20329[0...3] BI: DFR 2 inputs / DFR 2 inputs
p20334 BI: PDE 2 input pulse I / PDE 2 inp_pulse I
p20339 BI: PDE 3 input pulse I / PDE 3 inp_pulse I
p20344 BI: PDF 2 input pulse I / PDF 2 inp_pulse I
p20349 BI: PDF 3 input pulse I / PDF 3 inp_pulse I
p20354 BI: MFP 2 input pulse I / MFP 2 inp_pulse I
p20359 BI: MFP 3 input pulse I / MFP 3 inp_pulse I
```


1.4.2 Connector inputs (CI)

Product: G110M, Version: 4602113, Language: eng, Type: CI
p0641[0...n] CI: Current limit variable / Curr lim var
p1042[0...n] CI: Motorized potentiometer automatic setpoint/Mop auto setpoint
p1044[0...n] CI: Motorized potentiometer setting value / Mop set val
p1051[0...n] Cl: Speed limit RFG positive direction of rotation / n_limit RFG pos
p1052[0...n] CI: Speed limit RFG negative direction of rotation / n_limit RFG neg
p1070[0...n] CI: Main setpoint / Main setpoint
p1071[0...n] CI: Main setpoint scaling / Main setp scal
p1075[0...n] CI: Supplementary setpoint / Suppl setp
p1076[0...n] CI: Supplementary setpoint scaling / Suppl setp scal
p1085[0...n] CI: Speed limit in positive direction of rotation / n_limit pos
p1088[0...n] CI: Speed limit in negative direction of rotation / n_limit neg
p1098[0...n] CI: Skip speed scaling / n_skip scal
p1106[0...n] Cl: Minimum speed signal source / n_min s_src
p1109[0...n] Cl: Total setpoint / Total setp
p1138[0...n] CI: Up ramp scaling / Up ramp scaling
p1139[0...n] CI: Down ramp scaling / Down ramp scaling
p1144[0...n] CI: Ramp-function generator setting value / RFG setting value
p1155[0...n] CI: Speed controller speed setpoint $1 / n _c t r l n _$set 1
p1160[0...n] Cl: Speed controller speed setpoint $2 / n _c t r l$ n_set 2
p1330[0...n] CI: U/f control independent voltage setpoint / Uf U_set independ.
p1352[0...n] Cl: Motor holding brake starting frequency signal source / Brake f_start
p1455[0...n] Cl: Speed controller P gain adaptation signal / n_ctr adapt_sig Kp
p1466[0...n] CI: Speed controller P-gain scaling / n_ctrl Kp scal

p1475[0...n]	Cl : Speed controller torque setting value for motor holding brake / n_ctrl M_sv MHB
p1478[0...n]	Cl : Speed controller integrator setting value / n_ctr integ_setVal
p1479[0...n]	Cl : Speed controller integrator setting value scaling / n_ctrl I_val scal
p1486[0...n]	CI: Droop compensation torque / Droop M_comp
p1503[0...n]	Cl : Torque setpoint / M_set
p1511[0...n]	Cl : Supplementary torque 1 / M_suppl 1
p1512[0...n]	CI: Supplementary torque 1 scaling / M_suppl 1 scal
p1513[0...n]	Cl : Supplementary torque 2 / M_suppl 2
p1522[0...n]	Cl : Torque limit upper / M_max upper
p1523[0...n]	CI : Torque limit lower / M_max lower
p1528[0...n]	Cl : Torque limit upper scaling / M_max upper scal
p1529[0...n]	CI : Torque limit lower scaling / M_max lower scal
p1552[0...n]	CI : Torque limit upper scaling without offset / M_max up w/o offs
p1554[0...n]	CI: Torque limit lower scaling without offset / M_max low w/o offs
p2016[0...3]	CI : Comm IF USS PZD send word / Comm USS send word
p2051[0...13]	CI : PROFIdrive PZD send word / PZD send word
p2061[0...12]	CI : PROFIBUS PZD send double word / PZD send DW
p2099[0...1]	CI : Connector-binector converter signal source / Con/bin S_src
p2151[0...n]	CI : Speed setpoint for messages/signals / n_set for msg
p2253[0...n]	CI: Technology controller setpoint 1 / Tec_ctrl setp 1
p2254[0...n]	Cl : Technology controller setpoint 2 / Tec_ctrl setp 2
p2264[0...n]	CI : Technology controller actual value / Tec_ctrl act val
p2289[0...n]	Cl : Technology controller pre-control signal / Tec_ctrl prectrl
p2296[0...n]	Cl : Technology controller output scaling / Tec_ctrl outp scal
p2297[0...n]	CI: Technology controller maximum limit signal source / Tec_ctrMaxLimS_src
p2298[0...n]	Cl : Technology controller minimum limit signal source / Tec_ctrl min_I s_s
p2299[0...n]	CI: Technology controller limit offset / Tech_ctrl lim offs
p3230[0...n]	Cl : Load monitoring speed actual value / Load monit n_act
p20094[0...3]	CI : ADD 0 inputs / ADD 0 inputs
p20098[0...3]	CI : ADD 1 inputs / ADD 1 inputs
p20102[0...1]	CI : SUB 0 inputs / SUB 0 inputs
p20106[0...1]	CI: SUB 1 inputs / SUB 1 inputs
p20110[0...3]	CI : MUL 0 inputs / MUL 0 inputs
p20114[0...3]	CI : MUL 1 inputs / MUL 1 inputs
p20118[0...1]	CI: DIV 0 inputs / DIV 0 inputs
p20123[0...1]	CI: DIV 1 inputs / DIV 1 inputs
p20128	CI: AVA 0 input X / AVA 0 input X
p20133	CI: AVA 1 input X / AVA 1 input X
p20218[0...1]	CI: NSW 0 inputs / NSW 0 inputs
p20223[0...1]	CI: NSW 1 inputs / NSW 1 inputs
p20228	CI: LIM 0 input X / LIM 0 input X
p20236	CI: LIM 1 input X / LIM 1 input X
p20244[0...1]	CI: PT1 0 inputs / PT1 0 inputs
p20250[0...1]	CI: PT1 1 inputs / PT1 1 inputs
p20256[0...1]	CI : INT 0 inputs / INT 0 inputs
p20266	CI: LVM 0 input X / LVM 0 input X
p20275	CI: LVM 1 input X / LVM 1 input X
p20284	CI: DIF 0 input X / DIF 0 input X
p20308[0...3]	CI : ADD 2 inputs / ADD 2 inputs
p20312[0...1]	CI: NCM 0 inputs / NCM 0 inputs
p20318[0...1]	CI: NCM 1 inputs / NCM 1 inputs
p20372	CI: PLI 0 input X / PLI 0 input X
p20378	CI: PLI 1 input X / PLI 1 input X

1.4.3 Binector outputs (BO)

Product: G110M, Version: 4602113, Language: eng, Type: BO
r0751.0... 10 BO: CU analog inputs status word / CU AI status word
r0807.0 BO: Master control active / PcCtrl active
r1025.0 BO: Fixed speed setpoint status / n_setp_fix status
r2043.0...2 BO: PROFIdrive PZD state / PD PZD state
r2090.0... 15 BO: PROFIdrive PZD1 receive bit-serial / PZD1 recv bitw
r2091.0... 15 BO: PROFIdrive PZD2 receive bit-serial / PZD2 recv bitw
r2092.0... 15 BO: PROFIdrive PZD3 receive bit-serial / PZD3 recv bitw
r2093.0... 15 BO: PROFIdrive PZD4 receive bit-serial / PZD4 recv bitw
r2094.0... 15 BO: Connector-binector converter binector output / Con/bin outp
r2095.0... 15 BO: Connector-binector converter binector output / Con/bin outp
r9935.0 BO: POWER ON delay signal / POWER ON t_delay
r20031 BO: AND 0 output Q / AND 0 output Q
r20035 BO: AND 1 output Q / AND 1 output Q
r20039 BO: AND 2 output Q / AND 2 output Q
r20043 BO: AND 3 output Q / AND 3 output Q
r20047 BO: OR 0 output Q / OR 0 output Q
r20051 BO: OR 1 output Q / OR 1 output Q
r20055 BO: OR 2 output Q / OR 2 output Q
r20059 BO: OR 3 output Q / OR 3 output Q
r20063 BO: XOR 0 output Q / XOR 0 output Q
r20067 BO: XOR 1 output Q / XOR 1 output Q
r20071 BO: XOR 2 output Q / XOR 2 output Q
r20075 BO: XOR 3 output Q / XOR 3 output Q
r20079 BO: NOT 0 inverted output / NOT 0 inv output
r20083 BO: NOT 1 inverted output / NOT 1 inv output
r20087 BO: NOT 2 inverted output / NOT 2 inv output
r20091 BO: NOT 3 inverted output / NOT 3 inv output
r20120 BO: DIV 0 divisor is zero QF / DIV 0 divisor=0 QF
r20125 BO: DIV 1 divisor is zero QF / DIV 1 divisor=0 QF
r20130 BO: AVA 0 input negative SN / AVA 0 input neg SN
r20135 BO: AVA 1 input negative SN / AVA 1 input neg SN
r20140 BO: MFP 0 output Q / MFP 0 output Q
r20145 BO: MFP 1 output Q / MFP 1 output Q
r20150 BO: PCL 0 output Q / PCL 0 output Q
r20155 BO: PCL 1 output Q / PCL 1 output Q
r20160 BO: PDE 0 output Q / PDE 0 output Q
r20165 BO: PDE 1 output Q / PDE 1 output Q
r20170 BO: PDF 0 output Q / PDF 0 output Q
r20175 BO: PDF 1 output Q / PDF 1 output Q
r20180 BO: PST 0 output Q / PST 0 output Q
r20185 BO: PST 1 output Q / PST 1 output Q
r20189 BO: RSR 0 output Q / RSR 0 output Q
r20190 BO: RSR 0 inverted output QN / RSR 0 inv outp QN
r20194 BO: RSR 1 output Q / RSR 1 output Q
r20195 BO: RSR 1 inverted output QN / RSR 1 inv outp QN
r20199 BO: DFR 0 output Q / DFR 0 output Q
r20200 BO: DFR 0 inverted output QN / DFR 0 inv outp QN
r20204 BO: DFR 1 output Q / DFR 1 output Q
r20205 BO: DFR 1 inverted output QN / DFR 1 inv outp QN
r20210 BO: BSW 0 output Q / BSW 0 output Q
r20215 BO: BSW 1 output Q / BSW 1 output Q
r20232 BO: LIM 0 input quantity at the upper limit QU / LIM 0 QU
r20233 BO: LIM 0 input quantity at the lower limit QL / LIM 0 QL

r20240	BO: LIM 1 input quantity at the upper limit QU / LIM 1 QU
r20241	BO: LIM 1 input quantity at the lower limit QL / LIM 1 QL
r20262	BO: INT 0 integrator at the upper limit QU / INT 0 QU
r20263	BO: INT 0 integrator at the lower limit QL / INT 0 QL
r20270	BO: LVM 0 input quantity above interval QU / LVM 0 X above QU
r20271	BO: LVM 0 input quantity within interval QM / LVM 0 X within QM
r20272	BO: LVM 0 input quantity below interval QL / LVM 0 X below QL
r20279	BO: LVM 1 input quantity above interval QU / LVM 1 X above QU
r20280	BO: LVM 1 input quantity within interval QM / LVM 1 X within QM
r20281	BO: LVM 1 input quantity below interval QL / LVM 1 X below QL
r20301	BO: NOT 4 inverted output / NOT 4 inv output
r20305	BO: NOT 5 inverted output / NOT 5 inv output
r20313	BO: NCM 0 output QU / NCM 0 output QU
r20314	BO: NCM 0 output QE / NCM 0 output QE
r20315	BO: NCM 0 output QL / NCM 0 output QL
r20319	BO: NCM 1 output QU / NCM 1 output QU
r20320	BO: NCM 1 output QE / NCM 1 output QE
r20321	BO: NCM 1 output QL / NCM 1 output QL
r20325	BO: RSR 2 output Q / RSR 2 output Q
r20326	BO: RSR 2 inverted output QN / RSR 2 inv outp QN
r20330	BO: DFR 2 output Q / DFR 2 output Q
r20331	BO: DFR 2 inverted output QN / DFR 2 inv outp QN
r20336	BO: PDE 2 output Q / PDE 2 output Q
r20341	BO: PDE 3 output Q / PDE 3 output Q
r20346	BO: PDF 2 output Q / PDF 2 output Q
r20351	BO: PDF 3 output Q / PDF 3 output Q
r20356	BO: MFP 2 output Q / MFP 2 output Q
r20361	BO: MFP 3 output Q / MFP 3 output Q

1.4.4 Connector outputs (CO)

Product: G110M, Version: 4602113, Language: eng, Type: CO

r0021	CO: Actual speed smoothed / n_act smooth
r0025	CO: Output voltage smoothed / U_outp smooth
r0026	CO: DC link voltage smoothed / Vdc smooth
r0027	CO: Absolute actual current smoothed / I_act abs val smth
r0032	CO: Active power actual value smoothed / P_actv_act smth
r0034	CO: Motor utilization / Motor utilization
r0035	CO: Motor temperature / Mot temp
r0036	CO: Power unit overload I2t / PU overload I2t
r0037[0...19]	CO: Power unit temperatures / PU temperatures
r0060	CO: Speed setpoint before the setpoint filter / n_set before filt.
r0062	CO: Speed setpoint after the filter / n_set after filter
r0063[0...2]	CO: Speed actual value /n_act
r0064	CO: Speed controller system deviation / n_ctrl system dev
r0066	CO: Output frequency /f_outp
r0067	CO: Output current maximum / I_outp max
r0068[0...1]	CO: Absolute current actual value / I_act abs val
r0069[0...6]	CO: Phase current actual value / I_phase act value
r0070	CO: Actual DC link voltage / Vdc act val
r0072	CO: Output voltage / U_output
r0074	CO: Modulat_depth / Modulat_depth
r0075	CO: Current setpoint field-generating / Id_set
r0076	CO: Current actual value field-generating / Id_act

r0077	CO: Current setpoint torque-generating / lq_set
r0078	CO: Current actual value torque-generating / Iq_act
r0079	CO: Torque setpoint / M_set
r0080[0...1]	CO: Torque actual value / M_act
r0081	CO: Torque utilization / M_Utilization
r0082[0...2]	CO: Active power actual value / P_act
r0083	CO: Flux setpoint / Flex setp
r0084[0...1]	CO: Flux actual value / Flux act val
r0087	CO: Actual power factor / Cos phi act
r0094	CO: Transformation angle / Transformat_angle
r0289	CO: Maximum power unit output current / PU I_outp max
r0586	CO: Measuring probe speed actual value / MT n_act
r0587	CO: Measuring probe measuring time measured / MT t_meas measured
r0588	CO: Measuring probe pulse counter / MT pulse counter
r0752[0...2]	CO: CU analog inputs input voltage/current actual / CU AI U/I_inp act
r0755[0...2]	CO: CU analog inputs actual value in percent / CU Al value in \%
r0944	CO: Counter for fault buffer changes / Fault buff change
p1001[0...n]	CO: Fixed speed setpoint $1 / n _$set_fixed 1
p1002[0...n]	CO: Fixed speed setpoint 2 / n_set_fixed 2
p1003[0...n]	CO: Fixed speed setpoint $3 / \mathrm{n}$ _set_fixed 3
p1004[0...n]	CO: Fixed speed setpoint 4 / n_set_fixed 4
p1005[0...n]	CO: Fixed speed setpoint $5 / n$ _set_fixed 5
p1006[0...n]	CO: Fixed speed setpoint $6 / n$ set_fixed 6
p1007[0...n]	CO: Fixed speed setpoint $7 / \mathrm{n}$ _set_fixed 7
p1008[0...n]	CO: Fixed speed setpoint $8 / n$ n_set_fixed 8
p1009[0...n]	CO: Fixed speed setpoint $9 / \mathrm{n}$ _set_fixed 9
p1010[0...n]	CO: Fixed speed setpoint $10 / \mathrm{n}$ _set_fixed 10
p1011[0...n]	CO: Fixed speed setpoint $11 / n$ set_fixed 11
p1012[0...n]	CO: Fixed speed setpoint 12 / n_set_fixed 12
p1013[0...n]	CO: Fixed speed setpoint $13 / n$ _set_fixed 13
p1014[0...n]	CO: Fixed speed setpoint $14 / \mathrm{n}$ _set_fixed 14
p1015[0...n]	CO: Fixed speed setpoint $15 / n$ n_set_fixed 15
r1024	CO: Fixed speed setpoint effective / n_set_fixed eff
r1045	CO: Mot. potentiometer speed setp. in front of ramp-fct. gen. / Mop n_set bef RFG
r1050	CO: Motor. potentiometer setpoint after the ramp-function generator / Mop setp after RFG
r1073	CO: Main setpoint effective / Main setpoint eff
r1077	CO: Supplementary setpoint effective / Suppl setpoint eff
r1078	CO: Total setpoint effective / Total setpoint eff
p1083[0...n]	CO: Speed limit in positive direction of rotation / n_limit pos
r1084	CO: Speed limit positive effective / n_limit pos eff
p1086[0...n]	CO: Speed limit in negative direction of rotation / n _limit neg
r1087	CO: Speed limit negative effective / n_limit neg eff
r1112	CO: Speed setpoint after minimum limiting / n_set aft min_lim
r1114	CO: Setpoint after the direction limiting / Setp after limit
r1119	CO: Ramp-function generator setpoint at the input / RFG setp at inp
r1149	CO: Ramp-function generator acceleration / RFG acceleration
r1150	CO: Ramp-function generator speed setpoint at the output / RFG n_set at outp
r1169	CO: Speed controller speed setpoints 1 and $2 / n _c t r l n _$set 1/2
r1170	CO: Speed controller setpoint sum / n_ctrl setp sum
r1258	CO: Vdc controller output / Vdc_ctrl output
r1298	CO: Vdc controller output (U/f) / Vdc_ctrl output
r1337	CO: Actual slip compensation / Slip comp act val
r1343	CO: I_max controller frequency output / I_max_ctrl f_outp
r1348	CO: U/f control Eco factor actual value / U/f Eco fac act v
p1351[0...n]	CO: Motor holding brake starting frequency / Brake f_start

r1438	CO: Speed controller speed setpoint / n_ctrl n_set
r1445	CO: Actual speed smoothed / n_act smooth
r1454	CO: Speed controller system deviation I component / n_ctrl sys dev Tn
r1468	CO: Speed controller P-gain effective / n_ctr Kp eff
r1482	CO: Speed controller I torque output / n_ctrl I-M_outp
r1490	CO: Droop feedback speed reduction / Droop n_reduction
r1493	CO: Moment of inertia total / M_inertia total
r1508	CO: Torque setpoint before supplementary torque / M_set bef. M_suppl
r1516	CO: Supplementary torque and acceleration torque / M_suppl + M_accel
r1518[0...1]	CO: Accelerating torque / M_accel
p1520[0...n]	CO: Torque limit upper / M_max upper
p1521[0...n]	CO: Torque limit lower / M_max lower
p1524[0...n]	CO: Torque limit upper/motoring scaling / M_max up/mot scal
p1525[0...n]	CO: Torque limit lower scaling / M_max lower scal
r1526	CO: Torque limit upper without offset / M_max up w/o offs
r1527	CO: Torque limit lower without offset / M_max low w/o offs
r1538	CO: Upper effective torque limit / M_max upper eff
r1539	CO: Lower effective torque limit / M_max lower eff
r1547[0...1]	CO: Torque limit for speed controller output / M_max outp n_ctrl
r1548[0...1]	CO: Stall current limit torque-generating maximum / Isq_max stall
p1570[0...n]	CO: Flux setpoint / Flex setp
r1593[0...1]	CO: Field weakening controller / flux controller output / Field/Fl_ctrl outp
r1597	CO: Field weakening controller output / Field_ctrl outp
r1598	CO: Total flux setpoint / Flux setp total
r1718	CO: Isq controller output / Isq_ctrl outp
r1723	CO: Isd controller output / Isd_ctrl outp
r1732[0...1]	CO: Direct-axis voltage setpoint / Direct U set
r1733[0...1]	CO: Quadrature-axis voltage setpoint / Quad U set
r1770	CO: Motor model speed adaptation proportional component / MotMod n_adapt Kp
r1771	CO: Motor model speed adaptation I comp. / MotMod n_adapt Tn
r1801[0...1]	CO: Pulse frequency / Pulse frequency
r1809	CO: Modulator mode actual / Modulator mode act
r2050[0...11]	CO: PROFIBUS PZD receive word / PZD recv word
r2060[0...10]	CO: PROFIdrive PZD receive double word / PZD recv DW
r2089[0...4]	CO: Send binector-connector converter status word / Bin/con ZSW send
r2120	CO: Sum of fault and alarm buffer changes / Sum buffer changed
r2121	CO: Counter alarm buffer changes / Alrm buff changed
r2131	CO: Actual fault code / Actual fault code
r2132	CO: Actual alarm code / Actual alarm code
r2169	CO: Actual speed smoothed signals / n_act smth message
p2201[0...n]	CO: Technology controller fixed value 1 / Tec_ctrl fix val 1
p2202[0...n]	CO: Technology controller fixed value 2 / Tec_ctr fix val 2
p2203[0...n]	CO: Technology controller fixed value 3 / Tec_ctr fix val 3
p2204[0...n]	CO: Technology controller fixed value 4 / Tec_ctr fix val 4
p2205[0...n]	CO: Technology controller fixed value 5 / Tec_ctr fix val 5
p2206[0...n]	CO: Technology controller fixed value 6 / Tec_ctr fix val 6
p2207[0...n]	CO: Technology controller fixed value 7 / Tec_ctr fix val 7
p2208[0...n]	CO: Technology controller fixed value 8 / Tec_ctr fix val 8
p2209[0...n]	CO: Technology controller fixed value 9 / Tec_ctr fix val 9
p2210[0...n]	CO: Technology controller fixed value 10 / Tec_ctr fix val 10
p2211[0...n]	CO: Technology controller fixed value 11 / Tec_ctr fix val 11
p2212[0...n]	CO: Technology controller fixed value 12 / Tec_ctr fix val 12
p2213[0...n]	CO: Technology controller fixed value 13 / Tec_ctr fix val 13
p2214[0...n]	CO: Technology controller fixed value 14 / Tec_ctr fix val 14
p2215[0...n]	CO: Technology controller fixed value 15 / Tec_ctr fix val 15

r2224	CO: Technology controller fixed value effective / Tec_ctr FixVal eff
r2245	CO: Technology controller mot. potentiometer setpoint before RFG / Tec_ctr mop befRFG
r2250	CO: Technology controller motorized potentiometer setpoint after RFG / Tec_ctr mop aftRFG
r2260	CO: Technology controller setpoint after ramp-function generator / Tec_ctr set aftRFG
r2262	CO: Technology controller setpoint after filter / Tec_ctr set aftFIt
r2266	CO: Technology controller actual value after filter / Tec_ctr act aftFlt
r2272	CO: Technology controller actual value scaled / Tech_ctrl act scal
r2273	CO: Technology controller error / Tec_ctrl error
p2291	CO: Technology controller maximum limiting / Tec_ctrl max_lim
p2292	CO: Technology controller minimum limiting / Tec_ctrl min_lim
r2294	CO: Technology controller output signal / Tec_ctrl outp_sig
p2295	CO: Technology controller output scaling / Tec_ctrl outp scal
r2344	CO: Technology controller last speed setpoint (smoothed) / Tec_ctrl n_setp_sm
p2900[0...n]	CO: Fixed value 1 [\%] / Fixed value 1 [\%]
p2901[0...n]	CO: Fixed value 2 [\%] / Fixed value 2 [\%]
r2902[0...14]	CO: Fixed values [\%] / Fixed values [\%]
p2930[0...n]	CO: Fixed value M [Nm] / Fixed value M [Nm]
r3131	CO: Actual flt value / Actual flt value
r3132	CO: Actual component number / Act comp_no.
r20095	CO: ADD 0 output Y / ADD 0 output Y
r20099	CO: ADD 1 output Y / ADD 1 output Y
r20103	CO: SUB 0 difference Y / SUB 0 difference Y
r20107	CO: SUB 1 difference Y / SUB 1 difference Y
r20111	CO: MUL 0 product $\mathrm{Y} / \mathrm{MUL} 0$ product Y
r20115	CO: MUL 1 product $\mathrm{Y} / \mathrm{MUL} 1$ product Y
r20119[0...2]	CO: DIV 0 quotient / DIV 0 quotient
r20124[0...2]	CO: DIV 1 quotient / DIV 1 quotient
r20129	CO: AVA 0 output Y / AVA 0 output Y
r20134	CO: AVA 1 output Y / AVA 1 output Y
r20220	CO: NSW 0 output Y / NSW 0 output Y
r20225	CO: NSW 1 output Y / NSW 1 output Y
r20231	CO: LIM 0 output Y / LIM 0 output Y
r20239	CO: LIM 1 output Y / LIM 1 output Y
r20247	CO: PT1 0 output Y / PT1 0 output Y
r20253	CO: PT1 1 output Y / PT1 1 output Y
r20261	CO: INT 0 output Y / INT 0 output Y
r20286	CO: DIF 0 output Y / DIF 0 output Y
r20309	CO: ADD 2 output Y / ADD 2 output Y
r20373	CO: PLI 0 output Y/ PLI 0 output Y
r20379	CO: PLI 1 output Y / PLI 1 output Y

1.4.5 Connector/binector outputs (CO/BO)

Product: G110M, Version: 4602113, Language: eng, Type: CO/BO
r0046.0... 31 CO/BO: Missing enable sig / Missing enable sig
r0050.0... 1 CO/BO: Command Data Set CDS effective / CDS effective
r0051.0... 1 CO/BO: Drive Data Set DDS effective / DDS effective
r0052.0... 15 CO/BO: Status word 1 / ZSW 1
r0053.0... 11 CO/BO: Status word 2 / ZSW 2
r0054.0... 15 CO/BO: Control word 1 / STW 1
r0055.0... 15 CO/BO: Supplementary control word / Suppl STW
r0056.0... 15 CO/BO: Status word, closed-loop control / ZSW cl-loop ctrl
r0722.0... 12 CO/BO: CU digital inputs status / CU DI status
r0723.0... 12 CO/BO: CU digital inputs status inverted / CU DI status inv

r0835.2... 8	CO/BO: Data set changeover status word / DDS_ZSW
r0836.0... 1	CO/BO: Command Data Set CDS selected / CDS selected
r0837.0... 1	CO/BO: Drive Data Set DDS selected / DDS selected
r0863.1	CO/BO: Drive coupling status word/control word / CoupleZSW/STW
r0885.0... 4	CO/BO: Quick stop status / QS status
r0898.0... 14	CO/BO: Control word sequence control / STW seq_ctrl
r0899.0... 13	CO/BO: Status word sequence control / ZSW seq_ctrl
r1099.0	CO/BO: Skip band status word / Skip band ZSW
r1198.0... 15	CO/BO: Control word setpoint channel / STW setpoint chan
r1199.0... 8	CO/BO: Ramp-function generator status word / RFG ZSW
r1204.0... 13	CO/BO: Flying restart U/f control status / FlyRest Uf st
r1205.0... 15	CO/BO: Flying restart vector control status / FlyRest vector st
r1214.0... 15	CO/BO: Automatic restart status / AR status
r1239.8... 13	CO/BO: DC braking status word / DCBRK ZSW
r1406.4... 15	CO/BO: Control word speed controller / STW n_ctrl
r1407.0... 17	CO/BO: Status word speed controller / ZSW n_ctrl
r1408.0... 14	CO/BO: Status word current controller / ZSW I_ctrl
r2129.0... 15	CO/BO: Trigger word for faults and alarms / Trigger word
r2135.12... 15	CO/BO: Status word faults/alarms 2 / ZSW fault/alarm 2
r2138.7... 15	CO/BO: Control word faults/alarms / STW fault/alarm
r2139.0... 12	CO/BO: Status word faults/alarms 1 / ZSW fault/alarm 1
r2197.0... 13	CO/BO: Status word monitoring 1 / ZSW monitor 1
r2198.0... 13	CO/BO: Status word monitoring 2 / ZSW monitor 2
r2199.0... 11	CO/BO: Status word monitoring 3 / ZSW monitor 3
r2225.0	CO/BO: Technology controller fixed value selection status word / Tec_ctr FixVal ZSW
r2349.0... 12	CO/BO: Technology controller status word / Tec_ctrl status
r3113.0... 15	CO/BO: NAMUR message bit bar / NAMUR bit bar
r3333.0... 3	CO/BO: $2 / 3$ wire control control word / $2 / 3$ wire STW
r3344.0... 2	CO/BO: Limit switch ON/OFF / Lim switch ON/OFF
r9772.0... 20	CO/BO: SI status (processor 1) / SI status P1
r9772.0... 17	CO/BO: SI status (processor 1) / SI status P1
r9773.0... 31	CO/BO: SI status (processor $1+$ processor 2) / SI status P1+P2
r9872.0... 20	CO/BO: SI status (processor 1) / SI status P1
r9872.0... 17	CO/BO: SI status (processor 1) / SI status P1

1.5 Parameters for write protection and know-how protection

1.5.1 Parameters with "WRITE_NO_LOCK"

The following list contains the parameters with the "WRITE_NO_LOCK" attribute. These parameters are not affected by the write protection.

Product: G110M, Version: 4602113, Language: eng, Type: WRITE_NO_LOCK	
p0003	Access level / Acc_level
p0010	Drive commissioning parameter filter / Drv comm. par_filt
p0124[0...n]	CU detection via LED / CU detection LED
p0970	Reset drive parameters / Drive par reset
p0971	Save parameters / Save par
p0972	Drive unit reset / Drv_unit reset
p2111	Alarm counter / Alarm counter
p3950	Service parameter / Serv par
p3981	Faults acknowledge drive object / Faults ackn DO
p3985	Master control mode selection / PcCtrl mode select
p7761	Write protection / Write protection
p9400	Safely remove memory card / Mem_card rem
p9484	BICO interconnections search signal source / BICO S_src srch

1.5.2 Parameters with "KHP_WRITE_NO_LOCK"

The following list contains the parameters with the "KHP_WRITE_NO_LOCK" attribute. These parameters are not affected by the know-how protection.

Product: G110M, Version: 4602113, Language: eng, Type: KHP_WRITE_NO_LOCK	
p0003	Access level / Acc_level
p0010	Drive commissioning parameter filter / Drv comm. par_filt
p0124[0...n]	CU detection via LED / CU detection LED
p0970	Reset drive parameters / Drive par reset
p0971	Save parameters / Save par
p0972	Drive unit reset / Drv_unit reset
p2040	Fieldbus interface monitoring time / Fieldbus t_monit
p2111	Alarm counter / Alarm counter
p3950	Service parameter / Serv par
p3981	Faults acknowledge drive object / Faults ackn DO
p3985	Master control mode selection / PcCtrl mode select
p7761	Write protection / Write protection
p8980	Ethernet/IPprofile / Eth/IP profile
p8981	Ethernet/IP ODVA STOP mode / Eth/IP ODVA STOP
p8982	Ethernet/IP ODVA speed scaling / Eth/IP ODVA n scal
p8983	Ethernet/IP ODVA torque scaling / Eth/IP ODVA M scal
p9400	Safely remove memory card / Mem_card rem
p9484	BICO interconnections search signal source / BICO S_src srch

1.5.3 Parameters with "KHP_ACTIVE_READ"

The following list contains the parameters with the "KHP_ACTIVE_READ" attribute.
These parameters can also be read with activated know-how protection.

Product: G110M, Version: 4602113, Language: eng, Type: KHP_ACTIVE_READ	
p0015	Macro drive unit / Macro drv unit
p0100	IEC/NEMA mot stds / IEC/NEMA mot stds
p0170	Number of Command Data Sets (CDS) / CDS count
p0180	Number of Drive Data Sets (DDS) / DDS count
p0199[0...24]	Drive object name / DO name
p0300[0...n]	Motor type selection / Mot type sel
p0304[0...n]	Rated motor voltage / Mot U_rated
p0305[0...n]	Rated motor current / Mot I_rated
p0505	Selecting the system of units / Unit sys select
p0595	Technological unit selection / Tech unit select
p0730	BI: CU signal source for terminal DO 0 / CU S_src DO 0
p0731	BI: CU signal source for terminal DO 1 / CU S_src DO 1
p0806	BI: Inhibit master control / PcCtrl inhibit
p0922	PROFIdrive PZD telegram selection / PZD telegr_sel
p1080[0...n]	Minimum speed / n_min
p1082[0...n]	Maximum speed / n_max
p1520[0...n]	CO: Torque limit upper / M_max upper
p2000	Reference speed reference frequency / n_ref f_ref
p2001	Reference voltage / Reference voltage
p2002	Reference current / I_ref
p2003	Reference torque / M_ref
p2005	Reference angle / Reference angle
p2006	Reference temp / Ref temp
p2007	Reference acceleration / a_ref
p2030	Field bus int protocol selection / Field bus protocol
p2038	PROFldrive STW/ZSW interface mode / PD STW/ZSW IF mode
p2079	PROFIdrive PZD telegram selection extended / PZD telegr ext
p7763	KHP OEM exception list number of indices for p7764 / KHP OEM qty p7764
p7764[0...n]	KHP OEM exception list / KHP OEM excep list
p9601	SI enable functions integrated in the drive (processor 1) / SI enable fct P1
p9810	SI PROFIsafe address (processor 2) / SI PROFIsafe P2

$1.6 \quad$ Quick commissioning ($\mathrm{p} 0010=1$)

The parameters required for the quick commissioning ($\mathrm{p} 0010=1$) are shown in the following table:

Table 1-7 Quick commissioning (p0010 = 1)

Par. no.	Name		Access level	Can be changed
p0010	Drive, commissioning parameter filter	1		C(1)T
p0015	Macro drive unit	1		C, C(1)
p0100	IEC/NEMA motor standard	1		C(1)
p0205	Power unit application	1		C(1,2)
p0230	Drive filter type, motor side	1		C(1,2)
p0300	Mot type selection	2		C(1,3)
p0301	Motor code number selection	2		C(1,3)
p0304	Rated motor voltage	1		C(1,3)
p0305	Rated motor current	1		C(1,3)
p0306	Number of motors connected in parallel	1		C(1,3)
p0307	Rated motor power	1		C(1,3)
p0308	Rated motor power factor	1		C(1,3)
p0309	Rated motor efficiency	1		C(1,3)
p0310	Rated motor frequency	1		C(1,3)
p0311	Rated motor speed	1		C(1,3)
p0314	Motor pole pair number	3		C(1,3)
p0316	Motor torque constant	3		C(1,3)UT
p0322	Maximum motor speed	1		C(1,3)
p0323	Maximum motor current	1		C(1,3)
p0335	Motor cooling type	2		$\mathrm{C}(1,3) \mathrm{T}$
p0400	Encoder type selection	1		C(1,4)
p0402	Gear unit type selection	1		C(1,4)
p0500	Technology application	2		$\mathrm{C}(1,5) \mathrm{T}$
p0640	Current limit	2		C(1,3)UT
p0922	PROFIdrive telegram selection	1		C(1)T
p0970	Reset drive parameters	1		$\mathrm{C}(1,30)$
p1080	Minimum speed	1		C(1)T
p1082	Maximum speed	1		$\mathrm{C}(1) \mathrm{T}$
p1120	Ramp-function generator ramp-up time	1		C(1)UT
p1121	Ramp-function generator ramp-down time	1		C(1)UT
p1135	OFF3 ramp-down time	2		C(1)UT
p1300	Open-loop/closed-loop control operating mode	2		C(1)T

Table 1-7 Quick commissioning (p0010 = 1), continued

Par. no.	Name	Access level		Can be changed
p1500	Torque setpoint selection	2		C(1)T
p1900	Motor data identification and rotating measurement	1		C(1)T
p1905	Parameter tuning selection	1		C(1)T
p2196	Torque utilization scaling	1		C(1,3)UT
p3900	Completion of quick commissioning	1		C(1)

If p0010 $=1$ is selected, p0003 (user access level) can be used to select the parameters that are to be accessed.

At the end of the quick commissioning, set p3900 $=1$ to perform the required motor calculations and reset all other parameters (not included in p0010 = 1) to their default settings.

Note

This only applies for the quick commissioning.

Function diagrams

Content

2.1 Table of contents 412
2.2 Explanations on the function diagrams 417
2.3 Input/output terminals, DIP switch 422
2.4 PROFIenergy 429
2.5 PROFIdrive communication (PROFIBUS/PROFINET) 432
2.6 Communication, fieldbus interface (USS, MODBUS) 447
2.7 Internal control/status words 454
2.8 Brake control 472
2.9 Setpoint channel 474
2.10 Vector control 485
2.11 Technology functions 511
2.12 Free function blocks 513
2.13 Technology controller 534
2.14 Signals and monitoring functions 539
2.15 Diagnostics 550
2.16 Data sets 556

2.1 Table of contents

2.2 Explanations on the function diagrams 417
1020 - Explanation of the symbols (Part 1) 418
1021 - Explanation of the symbols (Part 2) 419
1022 - Explanation of the symbols (Part 3) 420
1030 - Handling BICO technology 421
2.3 Input/output terminals, DIP switch 422
2201 - Overview of connections 423
2220 - Digital inputs, electrically isolated (DI 0 ... DI 3) 424
2241 - Digital outputs (DO 0 ... DO 1) 425
2251 - Analog inputs (AI $0 \ldots$ AI 1) 426
2256 - Analog inputs as digital inputs (DI 11 ... DI 12) 427
2280 - Quick commissioning with DIP switches 428
2.4 PROFlenergy 429
2381 - Control commands and request commands 430
2382 - States 431
2.5 PROFIdrive communication (PROFIBUS/PROFINET) 432
2401 - Overview 433
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics 434
2420 - Telegrams and Process data (PZD) 435
2440 - PZD receive signals interconnection 436
2441 - STW1 control word interconnection (p2038 = 2) 437
2442 - STW1 control word interconnection (p2038 = 0) 438
2446 - STW3 control word interconnection 439
2450 - PZD send signals interconnection 440
2451 - ZSW1 status word interconnection (p2038 = 2) 441
2452 - ZSW1 status word interconnection (p2038 = 0) 442
2456 - ZSW3 status word interconnection 443
2468 - Receive telegram, free interconnection via BICO (p0922 = 999) 444
2470 - Send telegram, free interconnection via BICO (p0922 = 999) 445
2472 - Status words, free interconnection 446
2.6 Communication, fieldbus interface (USS, MODBUS) 447
9310 - Configuration, addresses and diagnostics 448
9342 - STW1 control word interconnection 449
9352 - ZSW1 status word interconnection 450
9360 - Receive telegram, free interconnection via BICO (p0922 = 999) 451
9370 - Send telegram, free interconnection via BICO (p0922 = 999) 452
9372 - Status words, free interconnection 453
2.7 Internal control/status words 454
2501 - Control word, sequence control 455
2503 - Status word, sequence control 456
2505 - Control word, setpoint channel 457
2510 - Status word 1 (r0052) 458
2511 - Status word 2 (r0053) 459
2512 - Control word 1 (r0054) 460
2513 - Control word 2 (r0055) 461
2520 - Control word, speed controller 462
2522 - Status word, speed controller (r1407) 463
2526 - Status word, closed-loop control (r0056) 464
2530 - Status word, current control 465
2534 - Status word, monitoring functions 1 466
2536 - Status word, monitoring functions 2 467
2537 - Status word, monitoring functions 3 468
2546 - Control word, faults/alarms 469
2548 - Status word, faults/alarms 1 and 2 470
2634 - Sequence control - Missing enable signals 471
2.8 Brake control 472
2701 - Basic braking control 473
2.9 Setpoint channel 474
3001 - Overview 475
3010 - Fixed speed setpoints, binary selection (p1016 = 2) 476
3011 - Fixed speed setpoints, direct selection (p1016 = 1) 477
3020 - Motorized potentiometer 478
3030 - Main/supplementary setpoint, setpoint scaling, jogging 479
3040 - Direction limitation and direction reversal 480
3050 - Skip frequency bands and speed limitations 481
3060 - Basic ramp-function generator 482
3070 - Extended ramp-function generator 483
3080 - Ramp-function generator selection, status word, tracking 484
2.10 Vector control 485
6020 - Speed control and generation of the torque limits, overview 486
6030 - Speed setpoint, droop 487
6031 - Pre-control balancing, acceleration model 488
6040 - Speed controller 489
6050 - Kp_n-/Tn_n adaptation 490
6060 - Torque setpoint 491
6220 - Vdc_max controller and Vdc_min controller 492
6300 - U/f control, overview 493
6301 - V/f characteristic and voltage boost 494
6310 - Resonance damping and slip compensation (V/F) 495
6320 - Vdc_max controller (V/f) 496
6490 - Speed control configuration 497
6491 - Flux control configuration 498
6630 - Upper/lower torque limit 499
6640 - Current/power/torque limits 500
6700 - Current control, overview 501
6710 - Current setpoint filter 502
6714 - Iq and Id controllers 503
6721 - Id setpoint (PEM) 504
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) 505
6723 - Field weakening controller, flux controller (ASM, p0300 = 1) 506
6724 - Field weakening controller (PEM) 507
6730 - Interface to the Power Module (ASM, p0300 = 1) 508
6731 - Interface to the Power Module (PEM) 509
6799 - Display signals 510
2.11 Technology functions 511
7017 - DC brake (p0300 = 1) 512
2.12 Free function blocks 513
7200 - Run-time groups/Sampling times 514
7210 - AND (AND function block with 4 inputs) 515
7212 - OR (OR function blocks with 4 inputs) 516
7214 - XOR (XOR function blocks with 4 inputs) 517
7216 - NOT (inverter) 518
7220 - ADD (adder with 4 inputs), SUB (subtracter) 519
7222 - MUL (multiplier), DIV (divider) 520
7224 - AVA (absolute value generator) 521
7225 - NCM (numeric comparator) 522
7226 - PLI (scaling polyline) 523
7230 - MFP (pulse generator), PCL (pulse contractor) 524
7232 - PDE (switch-in delay) 525
7233 - PDF (switch-out delay) 526
7234 - PST (pulse stretcher) 527
7240 - RSR (RS flip-flop), DFR (D flip-flop) 528
7250 - BSW (binary change-over switch), NSW (numeric change-over switch) 529
7260 - LIM (limiter) 530
7262 - PT1 (smoothing element) 531
7264 - INT (integrator), DIF (differentiating element) 532
7270 - LVM (limit value monitor, double-sided with hysteresis) 533
2.13 Technology controller 534
7950 - Fixed values, binary selection (p2216 = 2) 535
7951 - Fixed values, direct selection (p2216 = 1) 536
7954 - Motorized potentiometer 537
7958 - Closed-loop control 538
2.14 Signals and monitoring functions 539
8005 - Overview 540
8010 - Speed signals 1 541
8011 - Speed signals 2 542
8012 - Torque signals, motor locked/stalled 543
8013 - Load monitoring 544
8014 - Thermal monitoring, power module 545
8016 - Thermal monitoring, motor 546
8017 - Thermal motor models 547
8020 - Monitoring functions 1 548
8021 - Monitoring functions 2 549
2.15 Diagnostics 550
8050 - Overview 551
8060 - Fault buffer 552
8065 - Alarm buffer 553
8070 - Faults/alarms trigger word (r2129) 554
8075 - Faults/alarms configuration 555

2 Function diagrams

2.1 Table of contents
2.16 Data sets 556
8560 - Command Data Sets (CDS) 557
8565 - Drive Data Sets (DDS) 558

2.2 Explanations on the function diagrams

Function diagrams

1020 - Explanation of the symbols (Part 1) 418
1021 - Explanation of the symbols (Part 2) 419
1022 - Explanation of the symbols (Part 3) 420
1030 - Handling BICO technology 421

Symbols for logic functions

Logical inversion
AND element with logical inversion of an input signal

OR element

Exclusive-OR/XOR
$y=1$ when $x 1 \neq x 2$ is.
R/S flip-flop
$S=$ setting input
$R=$ reset input
$\mathrm{Q}=$ non-inverted output

Symbols for computational and closed-loop control functions

$x \underbrace{-1}$	Sign reversal
\underline{x}	Absolute value generator
$\xrightarrow[x_{2}]{\stackrel{x}{1}^{\longrightarrow}}$	Divider $y=\frac{x_{1}}{x_{2}}$
$\xrightarrow{x}>0 \xrightarrow{y}$	Comparator Output $\mathrm{y}=$ a logical " 1 ", if the analog signal $\mathrm{x}>0$, i.e. is positive
$\xrightarrow{x} \begin{array}{\|l\|\|c\|} \hline & \frac{\mathrm{dx}}{\mathrm{dt}} \\ \hline \end{array}$	Differentiator $y=\frac{d x}{d t}$

Symbol for monitoring

Symbols for computational and closed-loop control functions

Threshold value switch 0/1
Outputs at y a logical " 1 " if $x>S$.

Threshold value $1 / 0$ with hysteresis
Outputs a logical " 1 " at y if $x<S$.
If $\mathrm{x}>=\mathrm{S}+\mathrm{H}$ then y returns to 0 .

Threshold value $0 / 1$ with hysteresis
Outputs a logical "1" at y if $x>S$.
$\mathrm{x}<=\mathrm{S}-\mathrm{H}$ then y returns to 0
 Limiter x is limited to the upper limit LU and the lower limit L and output at y . The digital signals MLU and MLL have the value "1", if the

Sample \& Hold element
Sample and hold element.
$y=x$ if $S E T=1$
(not retentively saved at POWER OFF)

2.3 Input/output terminals, DIP switch

Function diagrams

2201 - Overview of connections 423
2220 - Digital inputs, electrically isolated (DI 0 ... DI 3) 424
2241 - Digital outputs (DO 0 ... DO 1) 425
2251 - Analog inputs (AI $0 \ldots$ AI 1) 426
2256 - Analog inputs as digital inputs (DI 11 ... DI 12) 427
2280 - Quick commissioning with DIP switches 428

$2.4 \quad$ PROFlenergy

Function diagrams

2381 - Control commands and request commands 430
2382 - States
430

＜1＞Excerpt from：Basic state machine of a PROFIdrive drive axis，
source：PROFIBUS Nutzerorganisation（PNO）

1	2	3	4	5	6	7	8
PROFlenergy					fp＿2382＿97＿62．vsd	Function diagram	－ 2382 －
States					20．11．2013 V4．6 HF	G110M PN	

[^1]
2.5 PROFIdrive communication (PROFIBUS/PROFINET)

Function diagrams

2401 - Overview 433
2410 - PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics 434
2420 - Telegrams and Process data (PZD) 435
2440 - PZD receive signals interconnection 436
2441 - STW1 control word interconnection $(\mathrm{p} 2038=2)$ 437
2442 - STW1 control word interconnection (p2038 = 0) 438
2446 - STW3 control word interconnection 439
2450 - PZD send signals interconnection 440
2451 - ZSW1 status word interconnection (p2038 = 2) 441
2452 - ZSW1 status word interconnection $(\mathrm{p} 2038=0)$ 442
2456 - ZSW3 status word interconnection 443
2468 - Receive telegram, free interconnection via BICO (p0922 = 999) 444
2470 - Send telegram, free interconnection via BICO (p0922 = 999) 445
2472 - Status words, free interconnection 446

$\begin{gathered} <1> \\ \text { PZD telegr_sel } \\ 1 \ldots 999[\mathrm{~ms}] \\ \text { p0922 (1) } \end{gathered}$		Standard telegrams			Manufacturer-specific telegrams								Free telegram	
1														
Interconnection is made according to	[2440], [2450] automatically													
Telegram	1		20		350		352		353		354		999	
PZD1	STW1	zSW1	STW1 <4>	zSW1 <4>										
PZD2	NSOLL_A	NIST_A	NSOLL_A	NIST_A_GL										
PZD3	 			IAIST_GL	M_LIM	IAIST_GL	<3>	IAIST_GL			<3>	IAIST_GL		
PZD4				MIST_GL	STW3	zsW3	<3>	MIST_GL			<3>	MIST_GL		
PZD5				PIST_GL			<3>	WARN_CODE			<3>	WARN_CODE		
PZD6				<2>			<3>	FAULT_CODE			<3>	FAULT_CODE		
PZD7														
PZD8														
PZD9														
PZD10														
PZD11														
PZD12														

<1> If p0922 = 999 is changed to another value, the telegram is automatically assigned
If p0922 unequal 999 is changed to p0922 = 999, the "old" telegram assignment is maintained!
<2> Freely interconnectable (pre-setting: MELD NAMUR)
<3> Can be freely connected.
$<4>$ In order to comply with the PROFIdrive profile, PZD1 must be used as control word 1 (STW1) or status word 1 (ZSW1).
p2037 $=2$ should be set if STW1 is not transferred with PZD1 as specified in the PROFIdrive profile.

1	2	3	4	5	6		7	8
PROFIdrive (PROFIBUS/PROFINET)					fp_2420_97	06.vsd	Function diagram	2420 -
Telegrams and Process Data (PZD)					20.11.2013	V4.6 HF	G110M DP/PN	

Signal sources for PZD send signals					<1>	
Signal	Description	PROFIdrive Signal No.	Interconnection parameter	Function diagram	Data type	Scaling
ZSW1	Status word 1	2	r2089[0]	[2452]	U16	-
NIST_A	Actual speed A (16 bit)	6	r0063[0]	-	116	4000 hex $\widehat{\text { p } 2000 ~}$
IAIST_GLATT	Absolute actual current, smoothed	51	r0068[1]	[6799]	116	4000 hex $\widehat{\text { ¢ } 2002 ~}$
MIST_GLATT	Actual torque smoothed	53	r0080[1]	[6799]	116	4000 hex $\widehat{\text { ¢ } 2003 ~}$
PIST_GLATT	Power factor, smoothed	54	r0082[1]	[6799]	116	4000 hex
NIST_A_GLATT	Actual speed, smoothed	57	r0063[1]	-	116	4000 hex $\widehat{\text { p } 2000 ~}$
MELD_NAMUR	VIK-NAMUR message bit bar	58	r3113	-	U16	
FAULT_CODE	Fault code	301	r2131	[8060]	U16	
WARN_CODE	Alarm code	303	r2132	[8065]	U16	
ZSW3	Status word 3	305	r0053	[2456]	U16	

PZD send word 1... 8
p2051[0...7] WORD p2051[0...7] WORD r2053[0...7] WORD $\xrightarrow{4 \cdots}$
Telegram
assignment
assignment
according to p0922
accordin
[2420]

$<1>$ Data type according to the PROFIdrive profile: $\mathrm{I} 16=\operatorname{Integer} 16, \mathrm{U} 16=$ Unsigned16.

1 2	3	4	5	6	7	8
PROFIdrive (PROFIBUS/PROFINET)				fp_2450_97_64.vsd	Function diagram	- 2450 -
PZD send signals interconnection				20.11.2013 V4.6 HF	G110M DP/PN	

＜1＞To comply with the PROFIdrive profile，send word 1 must be used as status word 1 （ZSW1），
＜2＞Physical word values are inserted in the telegram as referenced variables．p200x apply as reference variables（telegram contents $=4000$ hex，if the input variable has the value p200x）．
The following applies for temperature values： $100^{\circ} \mathrm{C} \rightarrow 100 \%=4000$ hex； $0^{\circ} \mathrm{C}->0 \%$ ．
＜3＞A PZD send word can either be supplied via connector input p2051［x］（WORD）or via p2061［x］（DWORD）．The two corresponding connector inputs cannot be interconnected．

1	2	3	4	5	6		7	8
PROFIdrive（PROFIBUS／PROFINET）					fp＿2470＿9	61．vsd	Function diagram	－ 2470 －
Send telegram，free interconnection via BICO（p0922＝999）					20．11．2013	V4．6 HF	G110M DP／PN	

2.6 Communication, fieldbus interface (USS, MODBUS)
Function diagrams
9310 - Configuration, addresses and diagnostics 448
9342 - STW1 control word interconnection 449
9352 - ZSW1 status word interconnection 450
9360 - Receive telegram, free interconnection via BICO (p0922 = 999) 451
9370 - Send telegram, free interconnection via BICO (p0922 = 999) 452
9372 - Status words, free interconnection 453

Signal sources for fieldbus ZSW1

Signal	Meaning	Interconnection parameters	[Function diagram] internal control word	[Function diagram] signal target	Inverted <1>
zSW1.0	1 = Ready for switching on	p2080[0] $=$ r0899.0	[2503.7]	Sequence control	-
zsw1.1	1 = Ready for operation (DC link loaded, pulses inhibited)	p2080[1] = r0899.1	[2503.7]	Sequence control	-
ZSW1.2	1 = Operation enabled (drive follows n _set)	p2080[2] $=$ r0899.2	[2503.7]	Sequence control	-
zSW1.3	1 = Fault present	p2080[3] $=$ r2139.3	[2548.7]	[8060]	-
zSW1.4	1 = No coast down active (OFF2 inactive)	p2080[4] = r0899.4	[2503.7]	Sequence control	-
zSW1.5	1 = No fast stop active (OFF3 inactive)	p2080[5] $=$ r0899.5	[2503.7]	Sequence control	-
ZSW1.6	1 = Switching on inhibited active	p2080[6] $=$ r0899.6	[2503.7]	Sequence control	-
ZSW1.7	1 = Alarm present	p2080[7] $=\mathrm{r} 2139.7$	[2548.7]	[8065]	-
zSW1.8	1 = Speed setpoint - actual value deviation within tolerance t_off	p2080[8] = r2197.7	[2534.7]	[8011]	-
ZSW1.9	1 = Control requested <2>	p2080[9] $=$ r0899.9	[2503.7]	[2503]	-
zSW1.10	$1=\mathrm{f}$ or n comparison value reached/exceeded	p2080[10] $=$ r2199.1	[2536.7]	[8010]	-
ZSW1.11	$1=1, M$, or P limit not reached	p2080[11] = r1407.7	[2522.7]	[6060]	\checkmark
ZSW1.12	1 = Open holding brake	p2080[12] $=$ r0899.12	[2503.7]	[2701]	-
zSW1.13	1 = No motor overtemperature alarm	$\mathrm{p} 2080[13]=\mathrm{r} 2135.14$	[2548.7]	[8016]	\checkmark
ZSW1.14	$\begin{aligned} & 1=\text { Motor rotates forwards }\left(n _ \text {act } \geq 0\right) \\ & 0=\text { Motor rotates backwards }\left(n_{-} \text {act }<0\right) \end{aligned}$	p2080[14] $=$ r2197.3	[2534.7]	[8011]	-
ZSW1.15	1 = No alarm, thermal overload, power unit	$\mathrm{p} 2080[15]=\mathrm{r} 2135.15$	[2548.7]	[8014]	\checkmark

<1> The ZSW1 is generated using the binector-connector converter (BI: p2080[0...15], inversion: p2088[0].0...p2088[0].15) <2> The drive is ready to accept data.

1	2	3	4	5	6		7	8
Fieldbus Interface (USS, MODBUS on RS485)					fp_9352_97	62.vsd	Function diagram	-9352-
ZSW1 status word interconnection					20.11.2013	V4.6 HF	G110M	

<1> The receive word 1 must be used as control word (STW1) (due to bit 10 "control requested").
<2> The preconfiguration with the speed setpoint is set automatically via p1000 $=6$.
$<3>$ Using the connector-binector converters, the bits can be extracted from two of the PZD receive words 3 to 8 and used as binectors.
<4> The following representation applies for words: $4000 \mathrm{hex}=100 \%$.
The reference variables p200x apply for the ongoing interconnection ($100 \%->$ p200x).
The following applies for temperature values: $100^{\circ} \mathrm{C} \rightarrow 100 \%=4000$ hex, $0^{\circ} \mathrm{C} \rightarrow 0 \%$.

1	2	3	4	5	6		7	8
Fieldbus Interface (USS, Modbus on RS485)					fp_9360_97	_06.vsd	Function	-9360-
Receive telegram, free interconnection via BICO (p0922 = 999)					20.11.2013	V4.6 HF	G110M	

（SกดดОW ‘SSП）әэецәци！sпqрә！！‘ио！еэ！ипшшоэ $9^{\circ} \mathrm{Z}$

2.7 Internal control/status words

Function diagrams

2501 - Control word, sequence control 455
2503 - Status word, sequence control 456
2505 - Control word, setpoint channel 457
2510 - Status word 1 (r0052) 458
2511 - Status word 2 (r0053) 459
2512 - Control word 1 (r0054) 460
2513 - Control word 2 (r0055) 461
2520 - Control word, speed controller 462
2522 - Status word, speed controller (r1407) 463
2526 - Status word, closed-loop control (r0056) 464
2530 - Status word, current control 465
2534 - Status word, monitoring functions 1 466
2536 - Status word, monitoring functions 2 467
2537 - Status word, monitoring functions 3 468
2546 - Control word, faults/alarms 469
2548 - Status word, faults/alarms 1 and 2 470
2634 - Sequence control - Missing enable signals 471

456

＜1＞Only for G110M with DC brake．

1	2	3	4	5	6	7	8
Internal control／status words					fp＿2513＿97＿57．vsd	Function diagram	－ 2513 －
Control word 2 （r0055）					20．11．2013 V4．6 HF	G110M	

芮

$2.8 \quad$ Brake control

Function diagrams

2701 - Basic braking control473<1> Priority assignment (high -> low): p1215, p0858, p0855, p0856, sequence control.
2> If $1215=0,2->t=0 \mathrm{~ms}$.
<3> If an external motor holding brake is used, p1215 should be set to 3 and ro899.12 should be interconnected as control signal.
<4> r0046.21 $=0$, as long as r0046.0 $=1$ (OFF1 enable missing or switching on inhibited).
The signal generation is shown simplified
<5> The internal signal includes signals that lead to OFF1 or OFF3 (e. g. BICO or fault response).
6> If the brake is permanently applied or released (p0855, p0858 or p1215), the drive does not wait while the brake is released or applied.
<7> Start frequency with U/f control: p1351, p1352 [6310.6]; Start torque with vector control: p1475 [6040.3]

1	2	3	4	5	6	7	8
Braking Control					fp_2701_97_57.vsd	Function diagram	- 2701 -
Basic braking control					20.11.2013 V4.6 HF	G110M	

2.9 Setpoint channel

Function diagrams

3001 - Overview 475
3010 - Fixed speed setpoints, binary selection (p1016 = 2) 476
3011 - Fixed speed setpoints, direct selection (p1016 = 1) 477
3020 - Motorized potentiometer 478
3030 - Main/supplementary setpoint, setpoint scaling, jogging 479
3040 - Direction limitation and direction reversal 480
3050 - Skip frequency bands and speed limitations 481
3060 - Basic ramp-function generator 482
3070 - Extended ramp-function generator 483
3080 - Ramp-function generator selection, status word, tracking 484

<1> Inhibited during jogging.
<2> After a 0/1 signal the ramping is re-started.
$<3>$ With activated Technology controller ($\mathrm{p} 2200>0, \mathrm{p} 2251=0$) the ramp-function generator is bypassed (r2349.5)
<4> Value range and/or factory setting depend on Power Module

1	2	3	4	5	6	7	8
Setpoint channel					fp_3060_97_53.vsd	Function diagram	
Basic ramp-function generator					20.11.2013 V4.6 HF	F110M - 3060 -	

$2.10 \quad$ Vector control

Function diagrams

6020 - Speed control and generation of the torque limits, overview 486
6030 - Speed setpoint, droop 487
6031 - Pre-control balancing, acceleration model 488
6040 - Speed controller 489
6050 - Kp_n-/Tn_n adaptation 490
6060 - Torque setpoint 491
6220 - Vdc_max controller and Vdc_min controller 492
6300 - U/f control, overview 493
6301 - V/f characteristic and voltage boost 494
6310 - Resonance damping and slip compensation (V/F) 495
6320 - Vdc_max controller (V/f) 496
6490 - Speed control configuration 497
6491 - Flux control configuration 498
6630 - Upper/lower torque limit 499
6640 - Current/power/torque limits 500
6700 - Current control, overview 501
6710 - Current setpoint filter 502
6714 - Iq and Id controllers 503
6721 - Id setpoint (PEM) 504
6722 - Field weakening characteristic, Id setpoint (ASM, p0300 = 1) 505
6723 - Field weakening controller, flux controller (ASM, p0300 = 1) 506
6724 - Field weakening controller (PEM) 507
6730 - Interface to the Power Module (ASM, p0300 = 1) 508
6731 - Interface to the Power Module (PEM) 509
6799 - Display signals 510

[^2]

1	2	3	4	5	6		7	8
Vector control					fp_6300_97_53.vsd		Function diagram	-6300-
U/f control, overview							G110M	

U/f resonance damping

<1> If p1349 = 0 : the limit is $0,95 \times \mathrm{fMot} \mathrm{N}<=45 \mathrm{~Hz}$.
<2> Activation with r0056.4 $=1$ till r0066 >= p1334 and p1216 has expired
100% equal r0330 (Rated motor slip)

1	2	3	4	5	6		7	8
Vector control					fp_6310_9	_53.vsd	Function	-6310-
Resonance damping and slip compensation (U/f)					20.11.2013	V4.6 HF	G110M	

sweл6e!p uo!!vun」 て

[^3]

[^4]

2.11 Technology functions

Function diagrams

7017 - DC brake (p0300 = 1)

$2.12 \quad$ Free function blocks

Function diagrams

7200 - Run-time groups/Sampling times 514
7210 - AND (AND function block with 4 inputs) 515
7212 - OR (OR function blocks with 4 inputs) 516
7214 - XOR (XOR function blocks with 4 inputs) 517
7216 - NOT (inverter) 518
7220 - ADD (adder with 4 inputs), SUB (subtracter) 519
7222 - MUL (multiplier), DIV (divider) 520
7224 - AVA (absolute value generator) 521
7225 - NCM (numeric comparator) 522
7226 - PLI (scaling polyline) 523
7230 - MFP (pulse generator), PCL (pulse contractor) 524
7232 - PDE (switch-in delay) 525
7233 - PDF (switch-out delay) 526
7234 - PST (pulse stretcher) 527
7240 - RSR (RS flip-flop), DFR (D flip-flop) 528
7250 - BSW (binary change-over switch), NSW (numeric change-over switch) 529
7260 - LIM (limiter) 530
7262 - PT1 (smoothing element) 531
7264 - INT (integrator), DIF (differentiating element) 532
7270 - LVM (limit value monitor, double-sided with hysteresis) 533

	Run-time group					
	1	2	3	4	5	6
	$\mathrm{r} 20001[1]=8 \mathrm{~ms}$	$\mathrm{r} 20001[2]=16 \mathrm{~ms}$	$\mathrm{r} 20001[3]=32 \mathrm{~ms}$	$\mathrm{r} 20001[4]=64 \mathrm{~ms}$	$\mathrm{r} 20001[5]=128 \mathrm{~ms}$	$\mathrm{r} 20001[6]=256 \mathrm{~ms}$
Logic function blocks AND, OR, XOR, NOT	X	X	X	X	X	X
Arithmetic function blocks ADD, SUB, MUL, DIV, AVA, NCM, PLI	-	-	-	-	X	X
Time function blocks MFP, PCL, PDE, PDF, PST	-	-	-	-	X	X
Memory function blocks RSR, DSR	X	X	X	X	X	X
Switch function block NSW	-	-	-	-	X	X
Switch function block BSW	X	X	X	X	X	X
Control function blocks LIM, PT1, INT, DIF	-	-	-	-	X	X
Complex function blocks LVM	-	-	-	-	X	X

PST 1

1	2	3	4	5	6		7	8
Time function blocks					fp＿7234＿97	－51．vsd	Function	－ 7234 －
PST（pulse extender）					20．11．2013	V4．6 HF	G110M	

LVM 0

LVM 1

2.13 Technology controller

Function diagrams

7950 - Fixed values, binary selection (p2216 = 2) 535
7951 - Fixed values, direct selection (p2216 = 1) 536
7954 - Motorized potentiometer 537
7958 - Closed-loop control 538

2.14 Signals and monitoring functions

Function diagrams

8005 - Overview 540
8010 - Speed signals 1 541
8011 - Speed signals 2 542
8012 - Torque signals, motor locked/stalled 543
8013 - Load monitoring 544
8014 - Thermal monitoring, power module 545
8016 - Thermal monitoring, motor 546
8017 - Thermal motor models 547
8020 - Monitoring functions 1 548
8021 - Monitoring functions 2 549

2.15 Diagnostics

Function diagrams

8050 - Overview 551
8060 - Fault buffer 552
8065 - Alarm buffer 553
8070 - Faults/alarms trigger word (r2129) 554
8075 - Faults/alarms configuration 555

$$
\begin{aligned}
& \text { [8070] Faults/alarms trigger } \\
& \text { word }
\end{aligned}
$$

[^5]

Changing the message type - fault $<==>$ alarm for maximum 20 faults/alarms $<1>$

Changing the acknowledge mode for maximum 20 faults <1>

<1> The fault response, acknowledge mode and message type for all faults and alarms are set to meaningful default values in the factory setting Changes are only possible in specific value ranges specified by SIEMENS
When the message type is changed, the supplementary information is tranferred from fault value r0949 to alarm value r2124 and vice versa.

1	2	3	4	5	6		7	8
Diagnostics					fp_8075_97_51.vsd $20.11 .2013 \quad$ V4.6 HF		Function diagram	-8075-
Faults/alarms configuration							G110M	

2.16 Data sets

Function diagrams

8560 - Command Data Sets (CDS) 557
8565 - Drive Data Sets (DDS) 558

Faults and alarms

Content

3.1 Overview of faults and alarms 560
3.2 List of faults and alarms 568

3.1 Overview of faults and alarms

3.1.1 General

Fault and alarm displays (messages)

If a fault occurs, the drive indicates the fault and/or alarm.
For example, the following methods for displaying faults and alarms are available:

- Display via the fault and alarm buffer with PROFIBUS/PROFINET
- Display online via the commissioning software
- Display and operating unit (e.g. BOP, AOP)

Differences between faults and alarms

The differences between faults and alarms are as follows:

Table 3-1 Differences between faults and alarms

Type	\quad Description
Faults	What happens when a fault occurs? - The appropriate fault reaction is initiated. - Status bit ZSW1.3 is set. - The fault is entered in the fault buffer. How are faults eliminated? - Remove the original cause of the fault. - Acknowledge the fault.
Alarms	What happens when an alarm occurs? - Status signal ZSW1.7 is set. - The alarm is entered in the alarm buffer.
How are alarms eliminated?	
- Alarms acknowledge themselves. If the cause of the alarm is no longer	
present, they automatically reset themselves.	

Fault reactions

The following fault reactions are defined:
Table 3-2 Fault reactions

List	PROFIdrive	Reaction	Description
NONE	-	None	No reaction when a fault occurs. Note With "Basic positioner" (r0108.4 = 1), the following applies: When a fault occurs with fault reaction "NONE", an active traversing task is interrupted and the system switches to tracking mode until the fault has been rectified and acknowledged.
OFF1	ON/ OFF	Brake along the ramp-function generator down ramp followed by pulse inhibit	Speed control (p1300 = 20) - n _set $=0$ is input immediately to brake the drive along the rampfunction generator ramp down (p1121). - When zero speed is detected, the motor holding brake (if parameterized) is closed (p1215). The pulses are suppressed when the brake application time (p 1217) expires. Zero speed is detected if the actual speed drops below the threshold (p 1226) or if the monitoring time (p 1227), started when the speed setpoint <= speed threshold (p1226), has expired. Torque control (p1300 = 22) - The following applies to torque control: Reaction as for OFF2. - When the system switches to closed-loop control with p1501, the following applies: No separate braking reaction. If the actual speed value drops below the speed threshold (p1226) or the timer stage (p 1227) has expired, the motor holding brake (if one is being used) is closed. The pulses are suppressed when the brake application time (p 1217) expires.
OFF1 DELAYED	-	As for OFF1, however delayed	Faults with this fault response only become effective after the delay time in p3136 has expired. The remaining time up to OFF1 is displayed in r3137.
OFF2	$\begin{array}{\|l} \text { COAST } \\ \text { STOP } \end{array}$	Internal/external pulse inhibit	Speed and torque control - Immediate pulse suppression, the drive "coasts" to a standstill. - The motor holding brake (if one is being used) is closed immediately. - Switching on inhibited is activated.

Table 3-2 Fault reactions, continued

List	PROFIdrive	Reaction	Description
OFF3	QUICK STOP	Brake along the OFF3 down ramp followed by pulse inhibit	Speed control (p1300 = 20) - n _set $=0$ is input immediately to brake the drive along the OFF3 ramp down (p1135). - When zero speed is detected, the motor holding brake (if parameterized) is closed. The pulses are suppressed when the brake application time (p 1217) expires. Zero speed is detected if the actual speed drops below the threshold (p 1226) or if the monitoring time (p 1227), started when the speed setpoint $<=$ speed threshold (p1226), has expired. - Switching on inhibited is activated. Torque control (p1300 = 22) - Changeover to speed-controlled operation and other reactions as described for speed-controlled operation.
STOP1	-	-	Under development.
STOP2	-	n_set $=0$	- $\mathrm{n} _$set $=0$ is input immediately to brake the drive along the OFF3 ramp down (p1135). - The drive remains in speed control mode.
IASC/DCBRK	-	-	- For synchronous motors, the following applies: If a fault occurs with this fault reaction, an internal armature shortcircuit is triggered. The conditions for p1231 = 4 must be observed. - For induction motors, the following applies: If a fault occurs with this fault reaction, DC braking is triggered. DC braking must have been commissioned (p1230 to p1239).
ENCODER	-	Internal/external pulse inhibit (p0491)	The fault reaction ENCODER is applied as a function of the setting in p0491. Factory setting: p0491 = 0 --> Encoder fault causes OFF2 Notice When changing p0491, it is imperative that the information in the description of this parameter is carefully observed.

Acknowledgement of faults

The list of faults and alarms specifies how to acknowledge each fault after the cause has been remedied

Table 3-3 Acknowledgement of faults

Acknowledgment	Description
POWER ON	The fault is acknowledged via a POWER ON (switch Control Unit off and on again). Note If this action has not eliminated the fault cause, the fault is displayed again immediately after power-up.
IMMEDIATELY	Faults can be acknowledged as follows: 1 Acknowledging by setting parameter: $\text { p3981 = } 0 \text {--> } 1$ 2 Acknowledging via binector inputs: p2103 BI: 1. Acknowledge faults p2104 BI: 2. Acknowledge faults p2105 BI: 3. Acknowledge faults 3 Acknowledge using PROFIBUS control signal: STW1.7 = 0 --> 1 (edge) Note - These faults can also be acknowledged by a POWER ON operation. - If this action has not eliminated the fault cause, the fault will continue to be displayed after acknowledgment. - Safety Integrated faults The "Safe Torque Off" (STO) function must be deselected before these faults are acknowledged.
PULSE INHIBIT	The fault can only be acknowledged when the pulses are inhibited (r0899.11 = 0). The same possibilities are available for acknowledging as described under acknowledge IMMEDIATELY.

3.1.2 Explanation of the list of faults and alarms

The data in the following example has been chosen at random. The information listed below is the maximum amount of information that a description can contain. Some of the information is optional.

The "List of faults and alarms" (Page 568) has the following layout:

Start of example

Axxxxx (F, N)	Fault location (optional): Name
Reaction:	NONE
Acknowledgement:	NONE
Cause:	Description of possible causes.
	Fault value (r0949, interpret format): or alarm value (r2124, interpret format): (optional)
	Information about fault or alarm values (optional).
Remedy:	Description of possible remedies.

End of example

Axxxxx	Alarm xxxxx
Axxxxx (F, N)	Alarm xxxxx (message type can be changed to F or N)
Fxxxxx	Fault $\mathbf{x x x x x}$
Fxxxxx (A, N)	Fault xxxxx (report type can be changed to A or N)
Nxxxxx	No message
Nxxxxx (A)	No message (message type can be changed to A)
	A message comprises a letter followed by the relevant number.
	The meaning of the letters is as follows:
	- A means "Alarm"
	- F means "Fault"
	- N means "No message" or "Internal message"

The optional parentheses indicate whether the type specified for this message can be changed and which message types can be adjusted via parameters (p2118, p2119).

Information on reaction and acknowledgment is specified independently for a message with an adjustable message type (e.g. reaction to F, acknowledgment for F).

Note

You can change the default properties of a fault or alarm by setting parameters.
References: /BA15/ SINAMICS G110M Operating Instructions Section "Alarms, faults, and system messages"

The "List of faults and alarms" (Page 568) supplies information referred to the properties of a message set as default. If the properties of a specific message are changed, the corresponding information may have to be modified in this list.

Fault location (optional): Name

The fault location (optional), the name of the fault or alarm and the message number are all used to identify the message (e.g. with the commissioning software).

Reaction: Default fault reaction (adjustable fault reaction)

Specifies the default reaction in the event of a fault.
The optional parentheses indicate whether the default fault reactions can be changed and which fault reactions can be adjusted via parameters (p2100, p2101).

Note

See Table "Fault reactions" (Page 561)

Acknowledgement: Default acknowledgment (adjustable acknowledgment)

Specifies the default method of acknowledging faults after the cause has been eliminated.
The optional parentheses indicate whether the default acknowledgment can be changed and which acknowledgment can be adjusted via parameters (p2126, p2127).

Note

See Table "Acknowledgement of faults" (Page 563)

Cause:

Describes the possible causes of the fault/alarm. A fault or alarm value can also be specified (optional)

Fault value (r0949, format):
The fault value is entered in the fault buffer in r0949[0...63] and specifies additional, more precise information about a fault.

Alarm value (r2124, format):
The alarm value specifies additional, more precise information about an alarm.
The alarm value is entered in the alarm buffer in r2124[0...63] and specifies additional, more precise information about an alarm.

Remedy:

Description of the methods available for eliminating the cause of the active fault/alarm.

WARNING

In certain cases, servicing and maintenance personnel are responsible for choosing a suitable method for eliminating the cause of faults.

3.1.3 \quad Number ranges of faults and alarms

Note

The following number ranges represent an overview of all faults and alarms used in the SINAMICS drive family.

The faults and alarms for the product described in this List Manual are described in detail in "List of faults and alarms" (Page 568).

Faults and alarms are organized into the following number ranges:
Table 3-4 Number ranges of faults and alarms

from	to	Area
1000	3999	Control Unit, closed-loop control
4000	4999	Reserved
5000	5999	Power unit
6000	6899	Infeed
6900	6999	Braking Module
7000	7999	Drive
8000	8999	Option Board
9000	12999	Reserved
13000	13020	Licensing
13021	13099	Reserved
13100	13102	Know-how protection
13103	19999	Reserved
20000	29999	OEM
30000	30999	DRIVE-CLiQ component power unit
31000	31999	DRIVE-CLiQ component encoder 1
32000	32999	DRIVE-CLiQ component encoder 2 Note Faults that occur are automatically output as an alarm if the encoder is parameterized as a direct measuring system and does not intervene in the motor control.
37000	37999	HF Damping Module
33000	33999	DRIVE-CLiQ component encoder 3
34000	34999	Note
35000	35199	Terminal Module 54F (TM54F)
35200	35999	Terminal Module 31 (TM31)
Faults that occur are automatically output as an alarm if the encoder is		
the motor control.		

Table 3-4 Number ranges of faults and alarms, continued

from	to	Area
40000	40999	Controller Extension 32 (CX32)
41000	48999	Reserved
49000	49999	SINAMICS GM/SM/GL
50000	50499	Communication Board (COMM BOARD)
50500	59999	OEM Siemens
60000	65535	SINAMICS DC MASTER (closed-loop DC current control)

3.2 List of faults and alarms

3.2 List of faults and alarms

Product: G110M, Version: 4602113, Language: eng
Objects: CU_G110M_DP, CU_G110M_PN, CU_G110M_USS

F01000	Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- evaluate fault buffer (r0945).
	- carry out a POWER ON (power off/on) for all components.
	- if required, check the data on the non-volatile memory (e.g. memory card).
	- upgrade firmware to later version.
	- contact the Hotline.
	- replace the Control Unit.
F01001	FloatingPoint exception
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An exception occurred during an operation with the FloatingPoint data type.
	The error may be caused by the basic system or an OA application (e.g., FBLOCKS, DCC).
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
	Note:
	Refer to r9999 for further information about this fault.
	r9999[0]: Fault number.
	r9999[1]: Program counter at the time when the exception occurred.
	r9999[2]: Cause of the FloatingPoint exception.
	Bit $0=1$: Operation invalid
	Bit $1=1$: Division by zero
	Bit 2 = 1: Overflow
	Bit 3 = 1: Underflow
	Bit 4 = 1: Inaccurate result
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- check configuration and signals of the blocks in FBLOCKS.
	- check configuration and signals of DCC charts.
	- upgrade firmware to later version.
	- contact the Hotline.

F01002	Internal software error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	An internal software error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

F01003

Acknowledgement delay when accessing the memory
Reaction:
OFF2
Acknowledge:
IMMEDIATELY

Cause:	A memory area was accessed that does not return a "READY".
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- contact the Hotline.
N01004 (F, A)	Internal software error
Reaction:	NONE
Acknowledge:	NONE
Cause:	An internal software error has occurred.
	Fault value (r0949, hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- read out diagnostics parameter (r9999).
	- contact the Hotline.
	See also: r9999 (Software error internal supplementary diagnostics)
F01005	File upload/download error
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The upload or download of EEPROM data was unsuccessful.
	Fault value (r0949, interpret hexadecimal):
	yyxxxx hex: $\mathrm{yy}=$ component number, $x \times x x=$ fault cause
	xxxx = 000B hex = 11 dec :
	Power unit component has detected a checksum error.
	xxxx $=000 \mathrm{~F}$ hex $=15 \mathrm{dec}$:
	The selected power unit will not accept the content of the EEPROM file.
	xxxx $=0011$ hex = 17 dec :
	Power unit component has detected an internal access error.
	xxxx $=0012$ hex = 18 dec:
	After several communication attempts, no response from the power unit component.
	xxxx = 008B hex = 140 dec :
	EEPROM file for the power unit component not available on the memory card.
	xxxx $=008 \mathrm{D}$ hex $=141 \mathrm{dec}$:
	An inconsistent length of the firmware file was signaled. It is possible that the download/upload has been interrupted
	xxxx $=0090$ hex = 144 dec.
	When checking the file that was loaded, the component detected a fault (checksum). It is possible that the file on the memory card is defective.
	$x x x x=0092$ hex $=146 \mathrm{dec}$:
	This SW or HW does not support the selected function.
	xxxx $=009 \mathrm{C}$ hex $=156 \mathrm{dec}$:
	Component with the specified component number is not available (p7828).
	xxxx = Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Save a suitable firmware file or EEPROM file for upload or download in folder "/ee_sac/" on the memory card.

A01009 (N)	CU: Control module overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature (r0037[0]) of the control module (Control Unit) has exceeded the specified limit value.
Remedy:	- check the air intake for the Control Unit.
	- check the Control Unit fan.
	Note:
	The alarm automatically disappears after the limit value has been undershot.

3.2 List of faults and alarms

F01010	Drive type unknown
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An unknown drive type was found.
Remedy:	- replace Power Module.
	- carry out a POWER ON (power off/on).
	- upgrade firmware to later version.
	- contact the Hotline.
F01015	Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, decimal interpretation):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.

A01016 (F)	Firmware changed
Reaction:	NONE
Acknowledge:	NONE
Cause:	At least one firmware file in the directory was illegally changed on the non-volatile memory (memory card/device
	memory) with respect to the version when shipped from the factory.
	Alarm value (r2124, interpret decimal):
	0: Checksum of one file is incorrect.
	1: File missing.
	2: Too many files.
	3: Incorrect firmware version.
Remedy:	4: Incorrect checksum of the back-up file.
	For the non-volatile memory for the firmware (memory card/device memory), restore the delivery condition.
	Note:
	The file involved can be read out using parameter r9925.
	The status of the firmware check is displayed using r9926.
	See also: r9925 (Firmware file incorrect), r9926 (Firmware check status)

A01017	Component lists changed
Reaction:	NONE
Acknowledge:	NONE
Cause:	On the memory card, one file in the directory /SIEMENS/SINAMICS/DATA or /ADDON/SINAMICS/DATA has been
	illegally changed with respect to that supplied from the factory. No changes are permitted in this directory.
	Alarm value (r2124, interpret decimal):
	zyx dec: $x=$ Problem, $y=$ Directory, $x=$ File name
	$x=1:$ File does not exist.
	$x=2:$ Firmware version of the file does not match the software version.
$x=3:$ File checksum is incorrect.	
	$y=0:$ Directory /SIEMENS/SINAMICS/DATA/
	$y=1:$ Directory /ADDON/SINAMICS/DATA/
$z=0:$ File MOTARM.ACX	
$z=1:$ File MOTSRM.ACX	
$z=2:$ File MOTSLM.ACX	
	$z=3:$ File ENCDATA.ACX
$z=4:$ File FILTDATA.ACX	
	$z=5:$ File BRKDATA.ACX

$\left.\begin{array}{ll} & z=6: \text { File DAT_BEAR.ACX } \\ z=7: \text { File CFG_BEAR.ACX }\end{array}\right] \quad$ For the file on the memory card involved, restore the status originally supplied from the factory.

F01018	Booting has been interrupted several times
Reaction:	NONE
Acknowledge:	POWER ON
Cause:	Module booting was interrupted several times. As a consequence, the module boots with the factory setting.
	Possible reasons for booting being interrupted:
	- power supply interrupted.
	- CPU crashed.
Remedy:	- parameterization invalid.
	- carry out a POWER ON (power off/on). After switching on, the module reboots from the valid parameterization (if
	available).
	- restore the valid parameterization.
	Examples:
a) Carry out a first commissioning, save, carry out a POWER ON (switch-off/switch-on).	
b) Load another valid parameter backup (e.g. from the memory card), save, carry out a POWER ON (switch-	
off/switch-on).	
Note:	
	If the fault situation is repeated, then this fault is again output after several interrupted boots.

A01019	Writing to the removable data medium unsuccessful
Reaction:	NONE
Acknowledge:	NONE
Cause:	The write access to the removable data medium was unsuccessful.
Remedy:	Remove and check the removable data medium. Then run the data backup again.

A01020	Writing to RAM disk unsuccessful
Reaction:	NONE
Acknowledge:	NONE
Cause:	A write access to the internal RAM disk was unsuccessful.
Remedy:	Adapt the file size for the system logbook to the internal RAM disk (p9930).
	See also: p9930 (System logbook activation)

A01021	Removable data medium as USB data storage medium from the PC used
Reaction:	NONE
Acknowledge:	NONE
Cause:	The removable data medium is used as USB data storage medium from a PC
	As a consequence, the drive cannot access the removable data medium. When backing up, the configuration data
	cannot be saved on the removable data medium.
	Fault value (r0949, decimal interpretation):
	1: The know-how protection as well as the copy protection for the removable data medium is active. Backup is
inhibited.	
	2: The configuration data are only backed up in the Control Unit.
Remedy:	See also: r7760 (Write protection/know-how protection status), r9401 (Safely remove memory card status)
	Deactivate the USB connection to the PC and back up the configuration data.
	Note:
	The alarm is automatically canceled when disconnecting the USB connection or when removing the removable data
	medium.
See also: r9401 (Safely remove memory card status)	

3.2 List of faults and alarms

F01023	Software timeout (internal)
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An internal software timeout has occurred.
	Fault value (r0949, decimal interpretation):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
A01028 (F)	Configuration error
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameterization that was downloaded was generated with a different module type (Order No., MLFB).
Remedy:	Save parameters in a non-volatile fashion (p0971 = 1).
F01029	Inconsistency of the DIP switch settings and parameterization
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	87Hz DIP switch setting deviates from the parameter assignment.
	The DIP switch was set in parameter P133.
Remedy:	Save the parameter assignment in order to accept the settings entered using the DIP switch, or set the DIP switch differently.

F01030	Sign-of-life failure for master control
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	For active PC master control, no sign-of-life was received within the monitoring time.
Remedy:	The master control was returned to the active BICO interconnection.
	Set the monitoring time higher at the PC or, if required, completely disable the monitoring function.
	For the commissioning software, the monitoring time is set as follows:
	<Drive> -> Commissioning -> Control panel -> Button "Fetch master control" -> A window is displayed to set the
	monitoring time in milliseconds.
	Notice:
	The monitoring time should be set as short as possible. A long monitoring time means a late response when the
	communication fails!

F01033	Units changeover: Reference parameter value invalid
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	When changing over the units to the referred representation type, it is not permissible for any of the required reference parameters to be equal to 0.0
	Fault value (r0949, parameter):
	Reference parameter whose value is 0.0.
	See also: p0505 (Selecting the system of units), p0595 (Technological unit selection)
Remedy:	Set the value of the reference parameter to a number different than 0.0.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
F01034	Units changeover: Calculation parameter values after reference value change unsuccessful
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The change of a reference parameter meant that for an involved parameter the selected value was not able to be recalculated in the per unit representation. The change was rejected and the original parameter value restored.

	Fault value (r0949, parameter):
	Parameter whose value was not able to be re-calculated.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	Select the value of the reference parameter such that the parameter involved can be calculated in the per unit representation.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
A01035 (F)	ACX: Parameter back-up file corrupted
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the Control Unit is booted, no complete data set was found from the parameter back-up files. The last time that the parameterization was saved, it was not completely carried out.
	It is possible that the backup was interrupted by switching off or withdrawing the memory card.
	Alarm value (r2124, interpret hexadecimal):
	ddccbbaa hex:
	aa $=01$ hex:
	Power up was realized without data backup. The drive is in the factory setting.
	aa $=02$ hex:
	The last available internal backup data record was loaded. The parameterization must be checked. It is recommended that the parameterization is downloaded again.
	$\mathrm{aa}=03 \mathrm{hex}$:
	The last available data record from the memory card was loaded. The parameterization must be checked. aa $=04$ hex:
	An invalid data backup was loaded from the memory card into the drive. The drive is in the factory setting. dd, cc, bb:
	Only for internal Siemens troubleshooting.
	See also: p0971 (Save parameters)
Remedy:	- Download the project again with the commissioning software.
	- save all parameters (p0971 = 1 or "copy RAM to ROM").
F01036 (A)	ACX: Parameter back-up file missing
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When downloading the device parameterization, a parameter back-up file PSxxxyyy.ACX associated with a drive object cannot be found.
	Fault value (r0949, interpret hexadecimal):
	Byte 1: yyy in the file name PSxxxyyy.ACX
	yyy = 000 --> consistency back-up file
	yyy = 001 ... 062 --> drive object number
	yyy = 099 --> PROFIBUS parameter back-up file
	Byte 2, 3, 4:
	Only for internal Siemens troubleshooting.
Remedy:	If you have saved the project data using the commissioning software, carry out a new download for your project.
	Save using the function "Copy RAM to ROM" or with P0971 = 1
	This means that the parameter files are again completely written into the non-volatile memory.
	Note:
	If the project data have not been backed up, then a new first commissioning is required.

F01038 (A) ACX: Loading the parameter back-up file unsuccessful
Reaction: NONE (OFF1, OFF2, OFF3)

Acknowledge: IMMEDIATELY

Cause:
An error has occurred when downloading PSxxxyyy.ACX or PTxxxyyy.ACX files from the non-volatile memory. Fault value (r0949, interpret hexadecimal):
Byte 1: yyy in the file name PSxxxyyy.ACX
yyy = 000 --> consistency back-up file

3 Faults and alarms

3.2 List of faults and alarms

yyy $=001$... 062 --> drive object number
yyy = 099 --> PROFIBUS parameter back-up file
Byte 2:
255: Incorrect drive object type.
254: Topology comparison unsuccessful -> drive object type was not able to be identified.
Reasons could be:

- Incorrect component type in the actual topology
- Component does not exist in the actual topology.
- Component not active.

Additional values:
Only for internal Siemens troubleshooting.
Byte 4, 3:
Only for internal Siemens troubleshooting.
Remedy: - If you have saved the project data using the commissioning software, download the project again. Save using the function "Copy RAM to ROM" or with p0971 = 1 so that all of the parameter files are again completely written to the non-volatile memory.

- replace the memory card or Control Unit.

F01039 (A)	ACX: Writing to the parameter back-up file was unsuccessful
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	Writing to at least one parameter back-up file PSxxxyyy.*** in the non-volatile memory was unsuccessful. - In the directory /USER/SINAMICS/DATA/ at least one parameter back-up file PSxxxyyy.*** has the "read only" file attribute and cannot be overwritten. - There is not sufficient free memory space available. - The non-volatile memory is defective and cannot be written to. Fault value (r0949, interpret hexadecimal): dcba hex a = yyy in the file names PSxxxyyy.*** a = 000 --> consistency back-up file $a=001 \ldots 062$--> drive object number a = 099 --> PROFIBUS parameter back-up file $b=x x x$ in the file names PSxxxyyy.*** $b=000-->$ data save started with p0971=1 $b=010$--> data save started with p0971 = 10 $b=011$--> data save started with p0971 = 11 $b=012$--> data save started with p0971 = 12 d, c: Only for internal Siemens troubleshooting.
Remedy:	- check the file attribute of the files (PSxxxyyy.***, CAxxxyyy.***, CCxxxyyy.***) and, if required, change from "read only" to "writeable". - check the free memory space in the non-volatile memory. Approx. 80 kbyte of free memory space is required for every drive object in the system. - replace the memory card or Control Unit.
F01040	Save parameter settings and carry out a POWER ON
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A parameter has been changed that requires the parameters to be backed up and the Control Unit to be switched OFF and ON again.
Remedy:	- Save parameters (p0971). - carry out a POWER ON (power off/on) for the Control Unit.

F01042	Parameter error during project download
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when downloading a project using the commissioning software (e.g. incorrect parameter value).
	For the specified parameter, it was detected that dynamic limits were exceeded that may possibly depend on other parameters.
	Fault value (r0949, interpret hexadecimal): ccbbaaaa hex
	aaaa $=$ Parameter
	$\mathrm{bb}=$ Index
	cc = fault cause
	0 : Parameter number illegal.
	1: Parameter value cannot be changed.
	2: Lower or upper value limit exceeded.
	3: Sub-index incorrect.
	4: No array, no sub-index.
	5: Data type incorrect.
	6: Setting not permitted (only resetting).
	7: Descriptive element cannot be changed.
	9: Descriptive data not available.
	11: No master control.
	15: No text array available.
	17: Task cannot be executed due to operating state.
	20: lllegal value.
	21: Response too long.
	22: Parameter address illegal.
	23: Format illegal.
	24: Number of values not consistent.
	108: Unit unknown.
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	- enter the correct value in the specified parameter.
	- identify the parameter that restricts the limits of the specified parameter.
F01043	Fatal error at project download
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A fatal error was detected when downloading a project using the commissioning software.
	Fault value (r0949, decimal interpretation):
	1: Device status cannot be changed to Device Download (drive object ON?).
	2: Incorrect drive object number.
	8: Maximum number of drive objects that can be generated exceeded.
	11: Error while generating a drive object (global component).
	12: Error while generating a drive object (drive component).
	13: Unknown drive object type.
	14: Drive status cannot be changed to "ready for operation" (r0947 and r0949).
	15: Drive status cannot be changed to drive download.
	16: Device status cannot be changed to "ready for operation".
	18: A new download is only possible if the factory settings are restored for the drive unit.
	20: The configuration is inconsistent.
	21: Error when accepting the download parameters. 22: SW-internal download error.

3.2 List of faults and alarms

100: The download was canceled, because no write requests were received from the commissioning client. (e.g. for	
interrupted communication).	
Additional values: only for internal Siemens troubleshooting.	
Remedy:	- use the current version of the commissioning software.
- modify the offline project and download again (e.g. compare the motor and Power Module in the offline project and	
on the drive).	
- change the drive state (is a drive rotating or is there a message/signal?).	
- carefully note any other messages/signals and remove their cause.	
- boot from previously saved files (power-down/power-up or p0970=10,..).	

F01044

CU: Descriptive data error
Reaction: OFF2
Acknowledge: POWER ON
Cause: An error was detected when loading the descriptive data saved in the non-volatile memory.
Remedy: Replace the memory card or Control Unit.

A01045	Configuring data invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the parameter files PSxxxyyy.ACX, PTxxxyyy.ACX, CAxxxyyy.ACX, or CCxxxyyy.ACX saved in the non-volatile memory. Because of this, under certain circumstances, several of the saved parameter values were not able to be accepted. Also see r9406 up to r9408.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- Check the parameters displayed in r9406 up to r9408, and correct these if required.
	- Restore the factory setting using (p0970 = 1) and re-load the project into the drive unit.
	Then save the parameterization in STARTER using the "Copy RAM to ROM" function or with p0971 = 1. This overwrites the incorrect parameter files in the non-volatile memory - and the alarm is withdrawn.

A01049	It is not possible to write to file
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to write into a write-protected file (PSxxxxxx.acx). The write request was interrupted.
	Alarm value (r2124, interpret decimal):
Remedy:	Drive object number.
	Check whether the "write protected" attribute has been set for the files in the non-volatile memory under
	.../USER/SINAMICS/DATA/... When required, remove write protection and save again (e.g. set p0971 to 1).

F01054	CU: System limit exceeded
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one system overload has been identified.
	Fault value (r0949, decimal interpretation):
	1: Computing time load too high (r9976[1]).
	5: Peak load too high (r9976[5]).
	As long as this fault is present, it is not possible to save the parameters (p0971).
Remedy:	See also: r9976 (System utilization)
	Re fault value = 1, 5:
	- reduce the computing time load of the drive unit (r9976[1] and r9976[5]) to under 100%.
	- check the sampling times and adjust if necessary (p0115, p0799, p4099).
	- de-activate function modules.
	- de-activate drive objects.
	- remove drive objects from the target topology.
	- note the DRIVE-CLiQ topology rules and if required, change the DRIVE-CLiQ topology.

When using the Drive Control Chart (DCC) or free function blocks (FBLOCKS), the following applies

- the computing time load of the individual run-time groups on a drive object can be read out in r21005 (DCC) or r20005 (FBLOCKS).
- if necessary, the assignment of the run-time group (p21000, p20000) can be changed in order to increase the sampling time (r21001, r20001).
- if necessary, reduce the number of cyclically calculated blocks (DCC) and/or function blocks (FBLOCKS).

A01064 (F)	CU: Internal error (CRC)
Reaction:	NONE
Acknowledge:	NONE
Cause:	CRC error in the Control Unit program memory
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.

A01066	Buffer memory: 70\% fill level reached or exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile buffer memory for parameter changes is filled to at least 70%.
	This can also occur if the buffer memory is active ($\mathrm{p} 0014=1$) and parameters are continually changed via a fieldbus system.
Remedy:	If required, de-activate and clear the buffer memory (p0014 = 0).
	If required, clear the buffer memory (p0014 = 2).
	In the following cases, the entries in the buffer memory are transferred into the ROM and then the buffer memory is cleared:
	- p0971 = 1
	- power down/power up the Control Unit
	See also: p0014 (Buffer memory mode)

A01067	Buffer memory: 100 \% fill level
Reaction:	NONE
Acknowledge:	NONE
Cause:	The non-volatile buffer memory for param
	All additional parameter changes will no parameter changes can still be made in the
	This can also occur if the buffer memory system.
Remedy:	If required, de-activate and clear the buffer
	If required, clear the buffer memory (p001
	In the following cases, the entries in the cleared:
	- p0971 = 1
	- power down/power up the Control Unit
	See also: p0014 (Buffer memory mode)

F01068	CU: Data memory memory overflow
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The utilization for a data memory area is too large.
	Fault value (r0949, interpret binary):
	Bit $0=1:$ High-speed data memory 1 overloaded
	Bit $1=1:$ High-speed data memory 2 overloaded
	Bit $2=1:$ High-speed data memory 3 overloaded
	Bit $3=1:$ High-speed data memory 4 overloaded
	- de-activate the function module.
Remedy:	- de-activate drive object.
	- remove the drive object from the target topology.

3.2 List of faults and alarms

A01069	Parameter backup and device incompatible
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter backup on the memory card and the drive unit do not match.
	The module boots with the factory settings.
	Example:
	Devices A and B. are not compatible and a memory card with the parameter backup for device A is inserted in device B.
Remedy:	- insert a memory card with compatible parameter backup and carry out a POWER ON.
	- insert a memory card without parameter backup and carry out a POWER ON.
	- If required, withdraw the memory card and carry out POWER ON.
	- save the parameters (p0971 = 1).
F01072	Memory card restored from the backup copy
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The Control Unit was switched-off while writing to the memory card. This is why the visible partition became defective.
	After switching on, the data from the non-visible partition (backup copy) were written to the visible partition.
Remedy:	Check that the firmware and parameterization is up-to-date.
A01073 (N)	POWER ON required for backup copy on memory card
Reaction:	NONE
Acknowledge:	NONE
Cause:	The parameter assignment on the visible partition of the memory card has changed.
	In order that the backup copy on the memory card is updated on the non-visible partition, it is necessary to carry out a POWER ON or hardware reset (p0972) of the Control Unit.
	Note:
	It is possible that a new POWER ON is requested via this alarm (e.g. after saving with p0971 = 1).
Remedy:	- carry out a POWER ON (power off/on) for the Control Unit.
	- carry out a hardware reset (RESET button, p0972).

F01105 (A)	CU: Insufficient memory
Reaction:	OFF1
Acknowledge:	POWER ON
Cause:	Too many data sets are configured on this Control Unit. Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting.
Remedy:	- reduce the number of data sets.

F01107	Save to memory card unsuccessful
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A data save to the memory card was not able to be successfully carried out.
	- Memory card is defective.
	- Insufficient space on memory card.
	Fault value (r0949, decimal interpretation):
	1: The file on the RAM was not able to be opened.
	2: The file on the RAM was not able to be read.
	3: A new directory could not be created on the memory card.
	4: A new file could not be created on the memory card.
	5: A new file could not be written on the memory card.
	- try to save again.
Remedy:	- replace the memory card or Control Unit.

F01112	CU: Power unit not permissible
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The connected power unit cannot be used together with this Control Unit.
	Fault value (r0949, decimal interpretation):
	1: Power unit is not supported (e.g. PM340).
Remedy:	Replace the power unit that is not permissible by a component that is permissible.
F01120 (A)	Terminal initialization has failed
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error occurred while the terminal functions were being initialized.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
	- replace the Control Unit.
F01122 (A)	Frequency at the measuring probe input too high
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The frequency of the pulses at the measuring probe input is too high.
	Fault value (r0949, decimal interpretation):
	1: DI 1 (term. 6)
	2: DI 3 (term. 8)
Remedy:	Reduce the frequency of the pulses at the measuring probe input.
F01205	CU: Time slice overflow
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	Insufficient computation time.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	Contact the Hotline.
F01250	CU: CU-EEPROM incorrect read-only data
Reaction:	NONE (OFF2)
Acknowledge:	POWER ON
Cause:	Error when reading the read-only data of the EEPROM in the Control Unit.
	Fault value (r0949, decimal interpretation):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON.
	- replace the Control Unit.
A01251	CU: CU-EEPROM incorrect read-write data
Reaction:	NONE
Acknowledge:	NONE
Cause:	Error when reading the read-write data of the EEPROM in the Control Unit.
	Alarm value (r2124, interpret decimal):
	Only for internal Siemens troubleshooting.
Remedy:	For alarm value $\mathrm{r} 2124<256$, the following applies:
	- carry out a POWER ON. - replace the Control Unit.

3.2 List of faults and alarms

For alarm value r2124 >= 256, the following applies:

- clear the fault memory (p0952 = 0).
- replace the Control Unit.

F01257	CU: Firmware version out of date
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	The Control Unit firmware is too old.
	Fault value (r0949, interpret hexadecimal): bbbbbbaa hex: aa = unsupported component aa $=01$ hex $=1$ dec:
	The firmware being used does not support the Control Unit. aa $=02$ hex $=2$ dec:
	The firmware being used does not support the Control Unit. $\mathrm{aa}=03 \mathrm{hex}=3 \mathrm{dec}$:
	The firmware being used does not support the Power Module. $a \mathrm{a}=04$ hex $=4 \mathrm{dec}$:
	The firmware being used does not support the Control Unit.
Remedy:	Re fault value $=1,2,4$:
	- Upgrade the firmware of the Control Unit.
	For fault value = 3:
	- Upgrade the firmware of the Control Unit.
	- Replace the Power Module by a component that is supported.
F01340	Topology: Too many components on one line
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	For the selected communications clock cycle, too many DRIVE-CLiQ components are connected to one line of the Control Unit.
	Fault value (r0949, interpret hexadecimal):
	xyy hex: $\mathrm{x}=$ fault cause, yy = component number or connection number.
	1yy:
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all read transfers.
	2yy:
	The communications clock cycle of the DRIVE-CLiQ connection on the Control Unit is not sufficient for all write transfers.
	3yy:
	Cyclic communication is fully utilized.
	4yy:
	The DRIVE-CLiQ cycle starts before the earliest end of the application. An additional dead time must be added to the control. Sign-of-life errors can be expected.
	The conditions of operation with a current controller sampling time of $31.25 \mu \mathrm{~s}$ have not been maintained.
	5 yy :
	Internal buffer overflow for net data of a DRIVE-CLiQ connection.
	$6 y y$:
	Internal buffer overflow for receive data of a DRIVE-CLiQ connection.
	7yy:
	Internal buffer overflow for send data of a DRIVE-CLiQ connection.
	8 yy :
	The component clock cycles cannot be combined with one another
	900:
	The lowest common multiple of the clock cycles in the system is too high to be determined.
	901:
	The lowest common multiple of the clock cycles in the system cannot be generated with the hardware.

3 Faults and alarms

3.2 List of faults and alarms

F01512	BICO: No scaling available
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An attempt was made to determine a conversion factor for a scaling that does not exist.
	Fault value (r0949, decimal interpretation):
	Unit (e.g. corresponding to SPEED) for which an attempt was made to determine a factor.
Remedy:	Apply scaling or check the transfer value.
F01513 (N, A)	BICO: Interconnection cross DO with different scalings
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The requested BICO interconnection was established. However, a conversion is made between the BICO output and BICO input using the reference values.
	An interconnection is made between different drive objects and the BICO output has different normalized units than the BICO input or the normalized units are the same but the reference values are different.
	Example 1:
	BICO output with voltage normalized unit, BICO input with current normalized unit, BICO output and BICO input lie in different drive objects. This means that the factor p2002/p2001 is calculated between the BICO output and the BICO input.
	p2002: contains the reference value for current
	p2001: contains the reference value for voltage
	Example 2:
	BICO output with voltage normalized unit in drive object 1 (DO1), BICO input with voltage normalized unit in drive object 2 (DO2). The reference values for voltage (p2001) of the two drive objects have different values. This means that the factor p2001(DO1)/p2001(DO2) is calculated between the BICO output and the BICO input.
	p2001: contains the reference value for voltage, drive objects 1, 2
	Fault value (r0949, decimal interpretation):
	Parameter number of the BICO input (signal sink).
Remedy:	Not necessary.

A01514 (F)	BICO: Error when writing during a reconnect
Reaction:	NONE
Acknowledge:	NONE
Cause:	During a reconnect operation (e.g. while booting or downloading - but can also occur in normal operation) a parameter was not able to be written to. Example: When writing to BICO input with double word format (DWORD), in the second index, the memory areas overlap (e.g. p8861). The parameter is then reset to the factory setting. Alarm value (r2124, interpret decimal): Parameter number of the BICO input (signal sink). Remedy: Not necessary. F01515 (A) BICO: Writing to parameter not permitted as the master control is active Reaction: NONE Acknowledge: IMMEDIATELY Cause: When changing the number of CDS or when copying from CDS, the master control is active. Remedy: If required, return the master control and repeat the operation.

A01590 (F)	Drive: Motor maintenance interval expired
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected service/maintenance interval for this motor was reached.
	Alarm value (r2124, interpret decimal): Motor data set number.
See also: p0650 (Actual motor operating hours), p0651 (Motor operating hours maintenance interval)	
Remedy:	carry out service/maintenance and reset the service/maintenance interval (p0651).

F01600	SI P1: STOP A initiated
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 has detected an error and initiated a STOP A. - forced checking procedure of the safety shutdown path on processor 1 unsuccessful. - subsequent response to fault F01611 (defect in a monitoring channel). Fault value (r0949, decimal interpretation): 0: Stop request from processor 2. 1005: Pulses suppressed although STO not selected and there is no internal STOP A present. 1010: Pulses enabled although STO is selected or an internal STOP A is present. 9999: Subsequent response to fault F01611.
Remedy:	- select Safe Torque Off and de-select again. For fault value = 9999: - carry out diagnostics for fault F01611. Note: STO: Safe Torque Off
F01611 (A)	SIP1: Defect in a monitoring channel
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 has detected a fault in the crosswise data comparison between the two monitoring channels and has initiated a STOP F.
	Fault F01600 (SI P1: STOP A initiated) is output as a consequence of this fault.
	Fault value (r0949, decimal interpretation):
	0 : Stop request from processor 2.
	1 ... 999:
	Number of the cross-compared data that resulted in this fault. This number is also displayed in r9795. 2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits. 3: SI F-DI changeover tolerance time ($\mathrm{p} 9650, \mathrm{p} 9850$).
	8: SI PROFIsafe address (p9610, p9810).
	9: SI debounce time for STO (p9651, p9851).
	1000: Watchdog timer has expired.
	Within the time of approx. $5 \times$ p9650, alternatively, the following was defined:
	- Too many signal changes have occurred at the F-DI.
	- Via PROFIsafe, STO was too frequently initiated (also as subsequent response).
	1001, 1002: Initialization error, change timer / check timer.
	2000: Status of the STO selection for both monitoring channels are different.
	2001: Feedback of the safe pulse suppression on the two monitoring channels are different.
	2003: Status of the STO terminal on the processor 1 and processor 2 are different.
	6000 ... 6166:
	PROFIsafe fault values (PROFIsafe driver for PROFIBUS DP V1/V2 and PROFINET).
	For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions. 6000: An internal software error has occurred (only for internal Siemens troubleshooting).
	6064 ... 6071: Error when evaluating the F parameters. The values of the transferred F parameters do not match the expected values in the PROFIsafe driver.
	6064: Destination address and PROFIsafe address are different (F_Dest_Add).
	6065: Destination address not valid (F_Dest_Add).
	6066: Source address not valid (F_Source_Add).
	6067: Watchdog time not valid (F_WD_Time).
	6068: Incorrect SIL level (F_SIL).
	6069: Incorrect F-CRC length (F_CRC_Length).
	6070: Incorrect F parameter version (F_Par_Version).
	6071: CRC error for the F parameters (CRC1). The transferred CRC value of the F parameters does not match the value calculated in the PROFIsafe driver. 6072: F parameterization is inconsistent.

6165: A communications error was identified when receiving the PROFIsafe telegram. The fault may also occur if an inconsistent or out-of-date PROFIsafe telegram has been received after switching the Control Unit off and on or after plugging in the PROFIBUS/PROFINET cable.
6166: A time monitoring error (timeout) was identified when receiving the PROFIsafe telegram.
Remedy:
Re fault values 1 ... 999 described in "Cause":

- check the cross data comparison that resulted in a STOP F.
- carry out a POWER ON (power off/on).

For fault value $=1000$:

- check the wiring of the F-DI (contact problems).
- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.

Re fault value = 1001, 1002:

- carry out a POWER ON (power off/on).

Re fault value = 2000, 2001, 2003:

- check the tolerance time F-DI changeover and if required, increase the value (p9650/p9850).
- check the wiring of the F-DI (contact problems).
- check the causes of the STO selection in r9772.

For fault value $=6000$:

- carry out a POWER ON (power off/on).
- upgrade firmware to later version.
- contact the Hotline.
- replace Control Unit.

For fault value $=6064$:

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave.
- check the setting of the PROFIsafe address on processor 1 (p9610) and on processor 2 (p9810).

For fault value $=6065$:

- check the setting of the value in the F parameter F_Dest_Add at the PROFIsafe slave. It is not permissible for the destination address to be either 0 or FFFF!
For fault value = 6066:
- check the setting of the value in the F parameter F_Source_Add at the PROFIsafe slave. It is not permissible for the source address to be either 0 or FFFF!
For fault value $=6067$:
- check the setting of the value in the F parameter F_WD_Time at the PROFIsafe slave. It is not permissible for the watch time to be 0 !
For fault value $=6068$:
- check the setting of the value in the F parameter F_SIL at the PROFIsafe slave. The SIL level must correspond to SIL2!
For fault value $=6069$:
- check the setting of the value in the F parameter F_CRC_Length at the PROFIsafe slave. The setting of the CRC2 length is 2-byte CRC in the V1 mode and 3-byte CR \bar{C} in the $\bar{V} 2$ mode!
For fault value $=6070$:
- check the setting of the value in the F parameter F_Par_Version at the PROFIsafe slave. The value for the F parameter version is 0 in the V 1 mode and 1 in the $\overline{\mathrm{V}} 2$ mode!
For fault value $=6071$:
- check the settings of the values of the F parameters and the F parameter CRC (CRC1) calculated from these at the PROFIsafe slave and, if required, update.
For fault value $=6072$:
- check the settings of the values for the F parameters and, if required, correct.

The following combinations are permissible for F parameters F_CRC_Length and F_Par_Version:
F_CRC_Length $=2$-byte CRC and F_Par_Version $=0$
F_CRC_Length $=3$-byte CRC and F_Par_Version $=1$
For fault value $=6165$:

- if the fault occurs after powering up or after inserting the PROFIBUS/PROFINET cable, acknowledge the fault.
- check the configuration and communication at the PROFIsafe slave.
- check the setting of the value for F parameter F_{-}WD_Time on the PROFIsafe slave and increase if necessary.

	For fault value $=6166$: - check the configuration and communication at the PROFIsafe slave. - check the setting of the value for F parameter F_WD_Time on the PROFIsafe slave and increase if necessary. - evaluate diagnostic information in the F host. - check PROFIsafe connection. Re fault values that are described in "Cause": - carry out a POWER ON (power off/on). - contact the Hotline. - replace Control Unit. Note: F-DI: Failsafe Digital Input STO: Safe Torque Off
N01620 (F, A)	SI P1: Safe Torque Off active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" (STO) function has been selected on processor 1 using the input terminal and is active. Note: This message does not result in a safety stop response.
Remedy:	Not necessary. Note: STO: Safe Torque Off
F01625	SI P1: Sign-of-life error in safety data
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 has detected an error in the sign-of-life of the safety data and initiated a STOP A. - there is a communication error between processor 1 and processor 2 or communication has failed. - a time slice overflow of the safety software has occurred. Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting.
Remedy:	- select Safe Torque Off and de-select again. - carry out a POWER ON (power off/on). - check whether additional faults are present and if required, perform diagnostics. - check the electrical cabinet design and cable routing for EMC compliance
F01649	SI P1: Internal software error
Reaction:	OFF2
Acknowledge:	
Cause:	An internal error in the Safety Integrated software on processor 1 has occurred. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on). - re-commission the "Safety Integrated" function and carry out a POWER ON. - contact the Hotline. - replace Control Unit.
F01650	SI P1: Acceptance test required
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 1 requires an acceptance test. Note: This fault results in a STOP A that can be acknowledged.

3.2 List of faults and alarms

Fault value (r0949, decimal interpretation):
130: Safety parameters for processor 2 not available.
Note:
This fault value is always output when Safety Integrated is commissioned for the first time.
1000: Reference and actual checksum on processor 1 are not identical (booting).

- at least one checksum-checked piece of data is defective.
- Safety parameters set offline and loaded into the Control Unit.

2000: Reference and actual checksum on processor 1 are not identical (commissioning mode).

- reference checksum incorrectly entered on processor 1 (p9799 not equal to r9798).

2001: Reference and actual checksum on processor 2 are not identical (commissioning mode).

- reference checksum incorrectly entered on processor 2 (p9899 not equal to r9898).

2002: Enable of safety-related functions between the processor 1 and processor 2 differ (p9601 not equal to p9801).
2003: Acceptance test is required as a safety parameter has been changed.
2004: An acceptance test is required because a project with enabled safety-functions has been downloaded.
2005: The Safety logbook has identified that a functional safety checksum has changed. An acceptance test is required.
2020: Error when saving the safety parameters for the processor 2.
9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy: \quad For fault value $=130$:

- carry out safety commissioning routine.

For fault value $=1000$:

- again carry out safety commissioning routine.
- replace the memory card or Control Unit.
- Using STARTER, activate the safety parameters for the drive involved (change settings, copy parameters, activate settings).
For fault value $=2000$:
- check the safety parameters on processor 1 and adapt the reference checksum (p9799).

For fault value $=2001$:

- check the safety parameters on processor 2 and adapt the reference checksum (p9899).

For fault value $=2002$:

- enable the safety-related functions on processor 1 and check processor $2(\mathrm{p} 9601=\mathrm{p} 9801)$.

Re fault value $=2003$, 2004, 2005 :

- Carry out an acceptance test and generate an acceptance report.

The fault with fault value 2005 can only be acknowledged when the "STO" function is de-selected.
For fault value $=2020$:

- again carry out safety commissioning routine.
- replace the memory card or Control Unit.

For fault value = 9999:

- carry out diagnostics for the other safety-related fault that is present.

Note:
STO: Safe Torque Off
See also: p9799 (SI setpoint checksum SI parameters (processor 1)), p9899 (SI setpoint checksum SI parameters (processor 2))

F01651

Reaction:

Acknowledge:

Cause:

SI P1: Synchronization safety time slices unsuccessful

OFF2
IMMEDIATELY (POWER ON)
The "Safety Integrated" function requires synchronization of the safety time slices between processor 1 and processor 2. This synchronization was unsuccessful.
Note:
This fault results in a STOP A that cannot be acknowledged.
Fault value (r0949, decimal interpretation):
Only for internal Siemens troubleshooting.
Remedy:

F01653	SI P1: PROFIBUS/PROFINET configuration error
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	There is a PROFIBUS/PROFINET configuration error for using Safety Integrated monitoring functions with a higherlevel control. Note: For safety functions that have been enabled, this fault results in a STOP A that cannot be acknowledged. Fault value (r0949, decimal interpretation): 200: A safety slot for receive data from the control has not been configured. 210, 220: The configured safety slot for the receive data from the control has an unknown format. 230: The configured safety slot for the receive data from the F-PLC has the incorrect length. 231: The configured safety slot for the receive data from the F-PLC has the incorrect length. 250: A PROFIsafe slot is configured in the higher-level F control, however PROFIsafe is not enabled in the drive. 300: A safety slot for the send data to the control has not been configured. 310, 320: The configured safety slot for the send data to the control has an unknown format. 330: The configured safety slot for the send data to the F-PLC has the incorrect length. 331: The configured safety slot for the send data to the F-PLC has the incorrect length.
Remedy:	The following generally applies: - check and, if necessary, correct the PROFIBUS/PROFINET configuration of the safety slot on the master side. - upgrade the Control Unit software. For fault value $=250$: - remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive. Re fault value $=231,331$: - configure PROFIsafe telegram 30 in the F-PLC.
A01654 (F)	SI P1: Deviating PROFIsafe configuration
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of a PROFIsafe telegram in the higher-level control (F-PLC) does not match the parameterization in the drive. Note: This message does not result in a safety stop response. Alarm value (r2124, interpret decimal): 1: A PROFIsafe telegram is configured in the higher-level control, however PROFIsafe is not enabled in the drive (p9601.3). 2: PROFIsafe is parameterized in the drive; however, a PROFIsafe telegram has not been configured in the higher-level control.
Remedy:	The following generally applies: - check and, if necessary, correct the PROFIsafe configuration in the higher-level control. Re alarm value $=1$: - remove the PROFIsafe configuring in the higher-level F control or enable PROFIsafe in the drive. Re alarm value $=2$: - configure the PROFIsafe telegram to match the parameterization in the higher-level F-control.
F01655	SI P1: Align monitoring functions
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An error has occurred when aligning the Safety Integrated monitoring functions on processor 1 and processor 2. No common set of supported SI monitoring functions was able to be determined. - there is a communication error between processor 1 and processor 2 or communication has failed. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.

3.2 List of faults and alarms

Remedy:	- carry out a POWER ON (power off/on). - check the electrical cabinet design and cable routing for EMC compliance
F01656	SI P1: Parameter processor 2 parameter error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When accessing the Safety Integrated parameters for the processor 2 in the non-volatile memory, an error has occurred.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, decimal interpretation):
	129: Safety parameters for processor 2 corrupted.
	131: Internal software error
	132: Communication errors when uploading or downloading the safety parameters.
	255: Internal Control Unit software error.
Remedy:	- re-commission the safety functions.
	- replace the memory card or Control Unit.
	For fault value = 129:
	- activate the safety commissioning mode (p0010 = 95).
	- adapt the PROFIsafe address (p9610).
	- start the copy function for SI parameters (p9700 = D0 hex).
	- acknowledge data change (p9701 = DC hex).
	- exit the safety commissioning mode (p0010 = 0).
	- save all parameters (p0971 = 1 or "copy RAM to ROM").
	- carry out a POWER ON (power off/on) for the Control Unit.
	For fault value = 132:
	- check the electrical cabinet design and cable routing for EMC compliance
F01658	SI CU: PROFIsafe telegram number not suitable
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The PROFIsafe telegram number in p60022 is unsuitable for the enabled safety functions.
	Possible causes:
	- When PROFIsafe is not enabled (p9601.3 = 0), then it is not permissible to select a PROFIsafe telegram in p60022.
	- When PROFIsafe is enabled (p9601.3 = 1), then a PROFIsafe telegram must be selected in p60022.
	Note:
	This fault does not result in a safety stop response.
	See also: p9601 (SI enable functions integrated in the drive (processor 1)), p60022 (PROFIsafe telegram selection)
Remedy:	Select the telegram number that matches the Safety functions that have been enabled.
F01659	SI P1: Write request for parameter rejected
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The write request for one or several Safety Integrated parameters on processor 1 was rejected.
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, decimal interpretation):
	1: The Safety Integrated password is not set.
	2: A reset of the drive parameters was selected. However, the Safety Integrated parameters were not reset, as Safety Integrated is presently enabled.
	3: The interconnected STO input is in the simulation mode.
	10: An attempt was made to enable the STO function although this cannot be supported.
	14: An attempt was made to enable the PROFIsafe communications although this cannot be supported.
	15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported.

18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported.
20: An attempt was made to simultaneously enable both the drive-integrated motion monitoring functions via integrated F-DI and STO via terminals, even though these cannot be supported at the same time.
21: An attempt was made to enable the Safety Integrated functions although these cannot be supported by the connected Power Module.
26: At a digital input of the Control Unit, an attempt was made to activate the simulation mode (p0795), which is used by Safety Integrated (p10049).
See also: p0970 (Reset drive parameters), p3900 (Completion of quick commissioning), r9771 (SI common functions (processor 1)), r9871 (SI common functions (processor 2))
Remedy:
For fault value $=1$:

- set the Safety Integrated password (p9761).

For fault value $=2$:

- Inhibit Safety Integrated ($\mathrm{p} 9501, \mathrm{p} 9601$) or reset safety parameters $(\mathrm{p} 0970=5)$, then reset the drive parameters again.
For fault value $=3$:
- end the simulation mode for the digital input (p0795).

Re fault value $=10,14,15,18,20$:

- check whether there are faults in the safety function alignment (F01655, F30655) and if required, carry out diagnostics for the faults involved.
- use a Control Unit that supports the required function.

For fault value $=21$:

- use a Power Module that supports the Safety Integrated functions.

For fault value $=26$:

- check whether p10049 is set. Also check p10006 and p10009. Check whether in p10046, p10047
a test top of the FDO with a read back input is parameterized.
Note:
STO: Safe Torque Off
See also: p9601 (SI enable functions integrated in the drive (processor 1)), p9761 (SI password input), p9801 (SI enable functions integrated in the drive (processor 2))

F01660	SI P1: Safety-related functions not supported
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The Power Module does not support the safety-related functions. Safety Integrated cannot be commissioned.
	Note:
	This fault does not result in a safety stop response.
Remedy:	- use a Power Module that supports the safety-related functions.

F01661	SI P1: Simulation of the safety inputs active
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The simulation of the digital inputs of the Control Unit (p0795) is active.
	It is not permissible that safety inputs are simulated.
	Fault value (r0949, interpret binary):
	The displayed bits indicate which digital inputs must not be simulated.
Remedy:	- Deactivate the simulation of the digital inputs of the Control Unit for the safety inputs (p0795).
	- acknowledge fault.

F01662	Error internal communications
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	A module-internal communication error has occurred.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on).
	- upgrade firmware to later version.
	- contact the Hotline.

3.2 List of faults and alarms

F01663	SI P1: Copying the SI parameters rejected
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	In p9700, the value 208 is saved or entered offline.
	This is the reason that when booting, an attempt is made to copy SI parameters from processor 1 to processor 2. However, no safety-relevant function has been selected on processor 1 (p9601 = 0). This is the reason that copying is not possible.
	Note:
	This fault does not result in a safety stop response.
	See also: p9700 (SI Motion copy function)
Remedy:	- Set p9700 to 0.
	- Check p9601 and if required, correct.
	- Restart the copying function by entering the corresponding value into p9700.

F01665	SI P1: System is defective
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A system defect was detected before the last boot or in the actual one. The system might have been rebooted (reset).
	Fault value (r0949, interpret hexadecimal):
	200000 hex, 400000 hex, 8000yy hex (yy any):
	- Fault in the actual booting/operation.
	Additional values:
	- defect before the last time that the system booted.
Remedy:	- carry out a POWER ON (power off/on).
	- upgrade firmware to later version.
	- contact the Hotline.
	Re fault value $=200000$ hex, 400000 hex, 8000yy hex (yy any):
	- ensure that the Control Unit is connected to the Power Module.
F01690	SI Motion: Data save problem for the NVRAM
Reaction:	NONE (OFF1, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	There is not sufficient memory space in the NVRAM on the drive to save parameters r9781 and r9782 (safety logbook).
	Note:
	This fault does not result in a safety stop response.
	Fault value (r0949, decimal interpretation):
	0 : There is no physical NVRAM available in the drive.
	1: There is no longer any free memory space in the NVRAM.
Remedy:	For fault value = 0:
	- use a Control Unit NVRAM.
	For fault value = 1:
	- de-select functions that are not required and that take up memory space in the NVRAM.
	- contact the Hotline.
	Note:
	NVRAM: Non-Volatile Random Access Memory (non-volatile read and write memory)

A01693 (F)	SI Motion P1: Safety parameter setting changed, POWER ON required
Reaction:	NONE
Acknowledge:	NONE
Cause:	Safety parameters have been changed; these will only take effect following a POWER ON.
	Notice:
	All changed parameters of the safety motion monitoring functions will only take effect following a POWER ON.
	Alarm value (r2124, interpret decimal):
	Parameter number of the safety parameter which has changed, necessitating a POWER ON.

Remedy:	- execute the function "Copy RAM to ROM".
	- carry out a POWER ON (power off/on).
A01698 (F)	SI P1: Commissioning mode active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The commissioning of the "Safety Integrated" function is selected.
	This message is withdrawn after the safety functions have been commissioned.
	Note: - This message does not result in a safety stop response. - In the safety commissioning mode, the "STO" function is internally selected. Remedy:
	See also: p0010 (Drive commissioning parameter filter)
Not necessary.	

A01699 (F)	SI P1: Shutdown path must be tested
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time set in p9659 for the forced checking procedure of the safety shutdown paths has been exceeded. The
	safety shutdown paths must be re-tested.
	After the next time the "STO" function is de-selected, the message is withdrawn and the monitoring time is reset.
	Note:
	- This message does not result in a safety stop response.
	- The test must be performed within a defined, maximum time interval (p9659, maximum of 9000 hours) in order to
	comply with the requirements as laid down in the standards for timely fault detection and the conditions to calculate
the failure rates of safety functions (PFH value).	
	Operation beyond this maximum time period is permissible if it can be ensured that the forced checking procedure is
performed before persons enter the hazardous area and who are depending on the safety functions correctly	
functioning.	
Semedy:	Select STO and then de-select again.
	Note:
	STO: Safe Torque Off

A01796 (F, N)	SI P1: Wait for communication
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive waits for communication to be established to execute the safety-relevant motion monitoring functions.
	Note:
	In this state, the pulses are safely suppressed.
	Alarm value (r2124, interpret decimal):
3: Wait for communication to be established to PROFIsafe F-Host.	
	If, after a longer period of time, the message is not automatically withdrawn, the following checks have to be made:
	- Check any other PROFIsafe communication messages/signals present and evaluate them.
	- check the operating state of the F-Host.
	- Check the communication connection to the F Host.
See also: p9601 (SI enable functions integrated in the drive (processor 1)), p9801 (SI enable functions integrated in	
the drive (processor 2))	

A01900 (F)	PROFIBUS: Configuration telegram error
Reaction:	NONE
Acknowledge:	NONE
Cause:	A PROFIBUS master attempts to establish a connection using an incorrect configuring telegram.
	Alarm value (r2124, interpret decimal):
	2: Too many PZD data words for input or output. The number of possible PZD is specified by the number of indices in
	r2050/p2051.
	Uneven number of bytes for input or output.
	211: Unknown parameterizing block.

3 Faults and alarms

3.2 List of faults and alarms

	501: PROFIsafe parameter error (e.g. F_dest).
	502: PROFIsafe telegram does not match.
	Additional values:
	Only for internal Siemens troubleshooting.
Remedy:	Check the bus configuration on the master and slave sides.
	Re alarm value $=2$:
	Check the number of data words for input and output.
	Re alarm value $=211$:
	Ensure offline version <= online version.
	Re alarm value $=501$:
	Check the set PROFIsafe address (p9610).
	Re alarm value $=502$:
	Check the enable of F-DI (p9501.30).
$\overline{\mathrm{F} 01910 \text { (} \mathrm{N}, \mathrm{A})}$	Fieldbus interface setpoint timeout
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from the fieldbus interface has been interrupted.
	- bus connection interrupted.
	- communication partner switched off.
	For PROFIBUS:
	- PROFIBUS master set into the STOP state.
	See also: p2040 (Fieldbus interface monitoring time), p2047 (PROFIBUS additional monitoring time)
Remedy:	Ensure bus connection has been established and switch on communication peer. - if required, adapt p2040.
	For PROFIBUS:
	- set the PROFIBUS master to the RUN state.
	- slave redundancy: For operation on a Y link, it must be ensured that "DP alarm mode = DPV1" is set in the slave parameterization.

A01920 (F)	PROFIBUS: Interruption cyclic connection
Reaction:	NONE
Acknowledge:	NONE
Cause:	The cyclic connection to the PROFIBUS master is interrupted.
Remedy:	Establish the PROFIBUS connection and activate the PROFIBUS master in the cyclic mode.

A01945	PROFIBUS: Connection to the Publisher failed
Reaction:	NONE
Acknowledge:	NONE
Cause:	For PROFIBUS peer-to-peer data transfer, the connection to at least one Publisher has failed.
	Alarm value (r2124, interpret binary):
	Bit $0=1:$ Publisher with address in r2077[0], connection failed.
	\ldots
	Bit $15=1:$ Publisher with address in r2077[15], connection failed.
	Check the PROFIBUS cables.

F01946 (A) PROFIBUS: Connection to the Publisher aborted
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)

Cause: The connection to at least one Publisher for PROFIBUS peer-to-peer data transfer in cyclic operation has been aborted.
Fault value (r0949, interpret binary):
Bit $0=1$: Publisher with address in r2077[0], connection aborted.

Bit 15 = 1: Publisher with address in r2077[15], connection aborted.

Remedy:	- check the PROFIBUS cables. - check the state of the Publisher that has the aborted connection.
F01951	CU SYNC: Synchronization application clock cycle missing
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY (POWER ON) Cause:
	Internal synchronization of the application cycles unsuccessful. Fault value (ro949, decimal interpretation): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade the Control Unit software.

A01953	CU SYNC: Synchronization not completed
Reaction:	NONE
Acknowledge:	NONE
Cause:	After the drive system was powered up, synchronization between the basic clock cycle and application clock cycle was started but was not completed within the selected time tolerance. Alarm value (r2124, interpret decimal): Only for internal Siemens troubleshooting. Carry out a POWER ON (power off/on).
Remedy:	Trace: Start not possible
A02050	NONE
Reaction:	NONE
Acknowledge:	The trace has already been started.
Cause:	Stop the trace and, if necessary, start again.

A02055	Trace: Recording time too short
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace duration is too short.
	The minimum is twice the value of the trace clock cycle.
Remedy:	Check the selected recording time and, if necessary, adjust.

A02056	Trace: Recording cycle too short
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected recording clock cycle is lower than the basic clock cycle 500
Remedy $:$	Increase the value for the trace cycle.

A02057	Trace: Time slice clock cycle invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	The time slice clock cycle selected does not match any of the existing time slices.
Remedy:	Enter an existing time slice clock cycle. The existing time slices can be read out via p7901.
	See also: r7901 (Sampling times)

A02058	Trace: Time slice clock cycle for endless trace not valid
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for the endless trace
Remedy:	Enter the clock cycle of an existing time slice with a cycle time $>=2 \mathrm{~ms}$ for up to 4 recording channels or $>=4 \mathrm{~ms}$
	from 5 recording channels per trace.
	The existing time slices can be read out via p7901.
	See also: r7901 (Sampling times)

A02059	Trace: Time slice clock cycle for $\mathbf{2} \times 8$ recording channels not valid
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected time slice clock cycle cannot be used for more than 4 recording channels.
Remedy:	Enter the clock cycle of an existing time slice with a cycle time $>=4$ ms or reduce the number of recording channels
	to 4 per trace.
	The existing time slices can be read out via p7901.
	See also: r7901 (Sampling times)

A02060	Trace: Signal to be traced missing
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a signal to be traced was not specified. - the specified signals are not valid.
Remedy:	- specify the signal to be traced. - check whether the relevant signal can be traced.

A02061	Trace: Invalid signal
Reaction:	NONE
Acknowledge:	NONE
Cause:	- the specified signal does not exist.
Remedy:	- the specified signal can no longer be traced (recorded). - specify the signal to be traced. - check whether the relevant signal can be traced.

A02062	Trace: Invalid trigger signal
Reaction:	NONE
Acknowledge:	NONE
Cause:	- a trigger signal was not specified.
	- the specified signal does not exist.
	- the specified signal is not a fixed-point signal.
	- the specified signal cannot be used as a trigger signal for the trace.
Remedy:	Specify a valid trigger signal.

A02063	Trace: Invalid data type
Reaction:	NONE
Acknowledge:	NONE
Cause:	The specified data type to select a signal using a physical address is invalid.
Remedy:	Use a valid data type.

A02070	Trace: Parameter cannot be changed
Reaction:	NONE
Acknowledge:	NONE
Cause:	The trace parameter settings cannot be changed when the trace is active.
Remedy:	- stop the trace before parameterization.
	- if required, start the trace.

A02075	Trace: Pretrigger time too long
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected pretrigger time must be shorter than the trace time.
Remedy:	Check the pretrigger time setting and change if necessary.

F02080	Trace: Parameterization deleted due to unit changeover
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The trace parameterization in the drive unit was deleted due to a unit changeover or a change in the reference parameters.
Remedy:	Restart trace.
A02097	MTrace: multiple trace cannot be activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The following functions or settings are not permissible in conjunction with a multiple trace:
	- measuring function.
	- long-time trace
	- trigger condition "immediate recording start" (IMMEDIATE)
	- trigger condition "start with function generator" (FG_START).
Remedy:	- Deactivate multiple trace.
	- Deactivate function or setting that is not permissible.
A02098	MTrace: cannot be saved
Reaction:	NONE
Acknowledge:	NONE
Cause:	It is not possible to save the measurement results of a multiple trace on the memory card.
	A multiple trace is not started or is canceled.
	Alarm value (r2124, interpret decimal):
	1: memory card cannot be accessed (not inserted or blocked by a mounted USB drive).
	3: data save operation to slow. A second trace has been completed before the measurement results of the first trace were able to be saved.
	4: data save operation canceled (e.g. a file required for the save operation was no longer able to be found).
Remedy:	- insert or remove the memory card.
	- use a larger memory card.
	- configure the trace with a longer trace time or use an endless trace.
	- avoid saving parameters while the multiple trace is running. Saving parameters can
	Block writing measurement result files to the card, so that this alarm is output with alarm value 3
	- check whether other functions are presently accessing measurement result files of the multiple trace.

A02099

Trace: Insufficient Control Unit memory
Reaction: NONE
Acknowledge: NONE
Cause: The memory space still available on the Control Unit is no longer sufficient for the trace function.
Remedy: Reduce the memory required, e.g. as follows:

- reduce the trace time.
- increase the trace clock cycle.
- reduce the number of signals to be traced.

A02150	OA: Application cannot be loaded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The system was not able to load an OA application.
	Alarm value (r2124, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
	Note:
	OA: Open Architecture

3.2 List of faults and alarms

F02151 (A)	OA: Internal software error
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal software error has occurred within an OA application Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline. - replace the Control Unit. Note: OA: Open Architecture

F02152 (A)	OA: Insufficient memory
Reaction:	OFF1
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	Too many functions have been configured on this Control Unit (e.g. too many drives, function modules, data sets, OA applications, blocks, etc).
	Fault value (r0949, decimal interpretation):
	Only for internal Siemens troubleshooting.
Remedy:	- change the configuration on this Control Unit (e.g. fewer drives, function modules, data sets, OA applications, blocks, etc).
	- use an additional Control Unit.
	Note:
	OA: Open Architecture
F03000	NVRAM fault on action
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A fault occurred during execution of action p7770 $=1$ or 2 for the NVRAM data.
	Fault value (r0949, interpret hexadecimal):
	yyxx hex: $\mathrm{yy}=$ fault cause, $\mathrm{xx}=$ application ID
	$y \mathrm{y}=1$:
	The action $\mathrm{p} 7770=1$ is not supported by this version if Drive Control Chart (DCC) is activated for the drive object concerned.
	$y \mathrm{y}=2$:
	The data length of the specified application is not the same in the NVRAM and the backup.
	yy $=3$:
	The data checksum in p7774 is not correct.
	$y \mathrm{y}=4$:
	No data available to load.
Remedy:	- Perform the remedy according to the results of the troubleshooting. - If necessary, start the action again.

F03001	NVRAM checksum incorrect
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A checksum error occurred when evaluating the non-volatile data (NVRAM) on the Control Unit.
	The NVRAM data affected was deleted.
Remedy:	Carry out a POWER ON (power off/on) for all components.

F03505 (N, A) CU: Analog input wire breakage

Reaction: OFF1 (NONE, OFF2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The wire-break monitoring for an analog input has responded.
The input current of the analog input has undershot the threshold value parameterized in $\mathrm{p} 0761[0 . .3$].

```
p0756[0]: Analog input 0
p0756[1]: Analog input }
Fault value (r0949, decimal interpretation):
yxxx dec
y = analog input (0 = analog input 0 (Al 0), 1 = analog input 1 (Al 1))
xxx = component number (p0151)
Note:
For the following analog input type, the wire breakage monitoring is active:
p0756[0...1] = 1 (2 ... 10 V with monitoring)
Remedy: Check the connection to the signal source for interruptions.
Check the magnitude of the injected current - it is possible that the infed signal is too low. The input current measured by the analog input can be read in \(\mathrm{r} 0752[\mathrm{x}]\).
```

A03510 (F, N)	CU: Calibration data not plausible
Reaction:	NONE
Acknowledge:	NONE
Cause:	During booting, the calibration data for the analog inputs is read and checked with respect to plausibility. At least one calibration data point was determined to be invalid.
Remedy:	- power down/power up the power supply for the Control Unit. If it reoccurs, replace the module. In principle, operation could continue. The analog channel involved possibly does not achieve the specified accuracy.

A05000 (N)	Power unit: Overtemperature heat sink AC inverter
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for overtemperature at the inverter heat sink has been reached. The response is set using
	p0290.
If the temperature of the heat sink increases by an additional 5 K, then fault F30004 is initiated.	
Remedy:	Check the following: - is the ambient temperature within the defined limit values? - have the load conditions and the load duty cycle been appropriately dimensioned? - has the cooling failed?

A05001 (N)	Power unit: Overtemperature depletion layer chip
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for overtemperature of the power semiconductor in the AC converter has been reached.
	Note:
	- The response is set using p0290.
- If the depletion layer temperature increases by an additional 15 K, then fault F30025 is triggered.	
Remedy:	Check the following: - - have the load conditions and the load duty cycle been appropriately dimensioned? failed? - pulse frequency too high? See also: r0037 (Power unit temperatures), p0290 (Power unit overload response)

A05002 (N)	Power unit: Air intake overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	For chassis power units, the following applies:
	The alarm threshold for the air intake overtemperature has been reached. For air-cooled power units, the threshold is
	$42^{\circ} \mathrm{C}$ (hysteresis 2 K$)$. The response is set using p0290.
	If the air intake temperature increases by an additional 13 K, then fault F30035 is output.

3.2 List of faults and alarms

Remedy:	Check the following:
- is the ambient temperature within the defined limit values?	
- has the fan failed? Check the direction of rotation.	
A05004 (N)	Power unit: Rectifier overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for the overtemperature of the rectifier has been reached. The response is set using p0290. If the temperature of the rectifier increases by an additional 5 K, then fault F30037 is triggered. Check the following: Remedy:
	- is the ambient temperature within the defined limit values?
- have the load conditions and the load duty cycle been appropriately dimensioned?	
- has the fan failed? Check the direction of rotation.	
- has a phase of the line supply failed?	
- is an arm of the supply (incoming) rectifier defective?	

A05006 (N)	Power unit: Overtemperature thermal model
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature difference between the chip and heat sink has exceeded the permissible limit value (blocksize
	power units only).
	Depending on p0290, an appropriate overload response is initiated.
	See also: r0037 (Power unit temperatures)
Remedy:	Not necessary.
	The alarm disappears automatically once the limit value is undershot.
	Note:
	If the alarm does not disappear automatically and the temperature continues to rise, this can result in fault F30024.
	See also: p0290 (Power unit overload response)

F05118 (A)	Pre-charging contactor simultaneity monitoring time exceeded
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A feedback signal for the pre-charging contactor (ALM, SLM, BLM diode) or the line contactor (BLM thyristor) interconnected and the simultaneity monitoring (p0255[4, 6]) activated.
	After opening or closing a contactor of the parallel connection, after a monitoring time has elapsed, not all of the contactors have assumed the same state.
	Fault value (r0949, interpret binary):
	Bit $0=1$: simultaneity error when closing the contactors.
	Bit $1=1$: simultaneity error when opening the contactors.
	Bit $16=1$: PDS0 contactor is closed.
	Bit 17 = 1: PDS1 contactor is closed.
	Bit $18=1$: PDS2 contactor is closed.
	Bit 19 = 1: PDS3 contactor is closed.
	Bit $20=1$: PDS4 contactor is closed.
	Bit 21 = 1: PDS5 contactor is closed.
	Bit $22=1:$ PDS6 contactor is closed.
	Bit 23 = 1: PDS7 contactor is closed.
	Note:
	PDS: Power unit Data Set
Remedy:	- check the monitoring time setting (p0255[4, 6]).
	- check the contactor wiring and activation.
	- if required, replace the contactor.

F05119 (A)	Bypass contactor simultaneity monitoring time exceeded
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	A feedback signal for the bypass contactor is interconnected and the simultaneity monitoring ($\mathrm{p} 0255[5,7]$) activated. After opening or closing a contactor of the parallel connection, after a monitoring time has elapsed, not all of the contactors have assumed the same state. Fault value (r0949, interpret binary): Bit $0=1$: simultaneity error when closing the contactors. Bit $1=1$: simultaneity error when opening the contactors. Bit $16=1$: PDS0 contactor is closed. Bit $17=1$: PDS1 contactor is closed. Bit $18=1$: PDS2 contactor is closed. Bit $19=1$: PDS3 contactor is closed. Bit $20=1$: PDS4 contactor is closed. Bit 21 = 1: PDS5 contactor is closed. Bit 22 = 1: PDS6 contactor is closed. Bit 23 = 1: PDS7 contactor is closed. Note: PDS: Power unit Data Set
Remedy:	- check the monitoring time setting (p0255[5, 7]). - check the contactor wiring and activation. - if required, replace the contactor.
F06310 (A)	Supply voltage (p0210) incorrectly parameterized
Reaction:	NONE (OFF1, OFF2)
Acknowledge:	
Cause:	The measured DC voltage lies outside the tolerance range after pre-charging has been completed. The following applies for the tolerance range: 1.16 * p0210 < r0070 < 1.6 * p0210 Note: The fault can only be acknowledged when the drive is powered down. See also: p0210 (Drive unit line supply voltage)
Remedy:	- check the parameterized supply voltage and if required change (p0210). - check the line supply voltage. See also: p0210 (Drive unit line supply voltage)
A06921 (N)	Braking resistor phase unsymmetry
Reaction:	NONE
Acknowledge:	NONE
Cause: Remedy:	The three resistors of the braking chopper are not symmetrical. - check the feeder cables to the braking resistors. - If required, increase the value for detecting dissymmetry (p1364).
F06922	Braking resistor phase failure
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A phase failure for the brake resistor was detected. Fault value (r0949, decimal interpretation): 11: Phase U 12: Phase V 13: Phase W See also: p3235 (Phase failure signal motor monitoring time)
Remedy:	Check the feeder cables to the braking resistors.

3.2 List of faults and alarms

F07011	Drive: Motor overtemperature
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	KTY:
	The motor temperature has exceeded the fault threshold (p0605) or the timer (p0606) after the alarm threshold was exceeded (p0604) has expired. The response parameterized in p0610 becomes active. The alarm is withdrawn if the response threshold for wire breakage or sensor not connected is exceeded ($R>2120$ Ohm).
	PTC or bimetallic NC contact:
	The response threshold of 1650 Ohm was exceeded or the NC contact opened and the timer (p 0606) has expired. The response parameterized in p0610 becomes active.
	Possible causes:
	- Motor is overloaded
	- motor ambient temperature too high.
	- Wire break or sensor not connected
	Fault value (r0949, decimal interpretation):
	200: The motor temperature model 1 (12 t) signals an overtemperature ($\mathrm{p} 0612.0=1, \mathrm{p} 0611>0, \mathrm{p} 0615$ reached).
	See also: p0604, p0605, p0606, p0612, p0625, p0626, p0627, p0628
Remedy:	- Reduce the motor load.
	- check the ambient temperature and the motor ventilation.
	- check the wiring and the connection of the PTC or bimetallic NC contact.
	See also: p0604, p0605, p0606, p0612, p0625, p0626, p0627, p0628

A07012 (N)	Drive: Motor temperature model 1 overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The thermal 12 t motor model for synchronous motors identified that the alarm threshold was exceeded. See also: r0034 (Motor utilization), p0605 (Mot_temp_mod 1/2 threshold), p0612 (Mot_temp_mod activation)
Remedy:	- check the motor load and if required, reduce.
	- check the motor ambient temperature.
	- check the thermal time constant (p0611).
	Note:
	p0605 has no influence on the time up to an alarm being issued.
	See also: r0034 (Motor utilization), p0605 (Mot_temp_mod 1/2 threshold), p0612 (Mot_temp_mod activation)

A07014 (N)	Drive: Motor temperature model configuration alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	A fault has occurred in the configuration of the motor temperature model.
	Alarm value (r2124, interpret decimal):
	1:
	All motor temperature models: It is not possible to save the model temperature
	See also: p0610 (Motor overtemperature response)
Remedy:	- set the response for motor overtemperature to "Alarm and fault, no reduction of I _max" (p0610 = 2).
	See also: p0610 (Motor overtemperature response)

A07015	Drive: Motor temperature sensor alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	An error was detected when evaluating the temperature sensor set in p0601.
	With the fault, the time in p0607 is started. If the fault is still present after this time has expired, then fault F07016 is
output; however, at the earliest, 50 ms after alarm A07015.	
	Possible causes:
	- wire breakage or sensor not connected (KTY: R >2120 Ohm).
	- measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50 \mathrm{Ohm}$).

Remedy:	- make sure that the sensor is connected correctly.
- check the parameterization (p0601).	
See also: r0035 (Motor temperature), p0601 (Motor temperature sensor type), p0607 (Temperature sensor fault	
timer)	

F07016	Drive: Motor temperature sensor fault
Reaction:	OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	An error was detected when evaluating the temperature sensor set in p0601.
	Possible causes:
	- wire breakage or sensor not connected (KTY: R > 2120 Ohm).
	- measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50 \mathrm{Ohm}$).
	Note:
	If alarm A07015 is present, the time in p0607 is started. If the fault is still present after this time has expir F07016 is output; however, at the earliest, 50 ms after alarm A07015.
	See also: p0607 (Temperature sensor fault timer)
Remedy:	- make sure that the sensor is connected correctly.
	- check the parameterization (p0601).
	- induction motors: De-activate temperature sensor fault (p0607 = 0).
	See also: r0035 (Motor temperature), p0601 (Motor temperature sensor type), p0607 (Temperature sen timer)
F07080	Drive: Incorrect control parameter
Reaction:	NONE
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The closed-loop control parameters have been parameterized incorrectly (e.g. p0356 = L_spread = 0).
	Fault value (r0949, decimal interpretation):
	The fault value includes the parameter number involved.
	The following parameter numbers only occur as fault values for vector drives:
	p0310, for synchronous motors: p0341, p0344, p0350, p0357
	The following parameter numbers do not occur as fault values for synchronous motors:
	p0354, p0358, p0360
	See also: p0310, p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0640, p1082, p1300
Remedy:	Modify the parameter indicated in the fault value (r0949) (e.g. p0640 = current limit > 0).
	See also: p0311, p0341, p0344, p0350, p0354, p0356, p0358, p0360, p0640, p1082

F07082

Reaction:
Acknowledge:
Macro: Execution not possible
NONE
IMMEDIATELY
Cause:
The macro cannot be executed.
Fault value (r0949, interpret hexadecimal):
ccccbbaa hex
$\mathrm{cccc}=$ preliminary parameter number, $\mathrm{bb}=$ supplementary information, $\mathrm{aa}=$ fault cause
Fault causes for the trigger parameter itself:
19: Called file is not valid for the trigger parameter.
20: Called file is not valid for parameter 15.
21: Called file is not valid for parameter 700
22: Called file is not valid for parameter 1000
23: Called file is not valid for parameter 1500.
24: Data type of a TAG is incorrect (e.g. Index, number or bit is not U16).
Fault causes for the parameters to be set:
25: Error level has an undefined value.
26: Mode has an undefined value.
27: A value was entered as string in the tag value that is not "DEFAULT".
31: Entered drive object type unknown.
32: A device was not able to be found for the determined drive object number.

	34: A trigger parameter was recursively called.
	35: It is not permissible to write to the parameter via macro.
	36: Check, writing to a parameter unsuccessful, parameter can only be read, not available, incorrect data type, value range or assignment incorrect.
	37: Source parameter for a BICO interconnection was not able to be determined.
	38: An index was set for a non-indexed (or CDS-dependent) parameter.
	39: No index was set for an indexed parameter.
	41: A bit operation is only permissible for parameters with the parameter format DISPLAY_BIN.
	42: A value not equal to 0 or 1 was set for a BitOperation.
	43: Reading the parameter to be changed by the BitOperation was unsuccessful.
	51: Factory setting for DEVICE may only be executed on the DEVICE.
	61: The setting of a value was unsuccessful.
Remedy:	- check the parameter involved.
	- check the macro file and BICO interconnection.
	See also: p0015, p1000, p1500
F07083	Macro: ACX file not found
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The ACX file (macro) to be executed was not able to be found in the appropriate directory.
	Fault value (r0949, decimal interpretation):
	Parameter number with which the execution was started.
	See also: p0015, p1000, p1500
Remedy:	- check whether the file is saved in the appropriate directory on the memory card.
F07084	Macro: Condition for WaitUntil not fulfilled
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The WaitUntil condition set in the macro was not fulfilled in a certain number of attempts.
	Fault value (r0949, decimal interpretation):
	Parameter number for which the condition was set.
Remedy:	Check and correct the conditions for the WaitUntil loop.
F07086	Units changeover: Parameter limit violation due to reference value change
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A reference parameter was changed in the system. This resulted in the fact that for the parameters involved, the selected value was not able to be written in the per unit notation.
	The values of the parameters were set to the corresponding violated minimum limit/maximum limit or to the factory setting.
	Possible causes:
	- the steady-state minimum limit/maximum limit or that defined in the application was violated.
	Fault value (r0949, parameter):
	Diagnostics parameter to display the parameters that were not able to be re-calculated.
	See also: p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004
Remedy:	Check the adapted parameter value and if required correct.
F07088	Units changeover: Parameter limit violation due to units changeover
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	A changeover of units was initiated. This resulted in a violation of a parameter limit
	Possible causes for the violation of a parameter limit:
	- When rounding off a parameter corresponding to its decimal places, the steady-state minimum limit or maximum limit was violated.
	- inaccuracies for the data type "FloatingPoint".

In these cases, when the minimum limit is violated then the parameter value is rounded up and when the maximum
limited is violated the parameter value is rounded down.
Fault value (r0949, decimal interpretation):
Diagnostics parameter r9451 to display all parameters whose value had to be adapted.
See also: p0100 (IEC/NEMA mot stds), p0505 (Selecting the system of units), p0595 (Technological unit selection)
Check the adapted parameter values and if required correct.
See also: r9451 (Units changeover adapted parameters)

A07200	Drive: Master control ON command present
Reaction:	NONE
Acknowledge:	NONE
Cause:	The ON/OFF1 command is present (no 0 signal).

F07220 (N, A) Drive: Master control by PLC missing
Reaction: OFF1 (NONE, OFF2, OFF3, STOP2)
Acknowledge: IMMEDIATELY

Cause: The "master control by PLC" signal was missing in operation.

> - interconnection of the binector input for "master control by PLC" is incorrect (p0854).

- the higher-level control has withdrawn the "master control by PLC" signal.
- data transfer via the fieldbus (master/drive) was interrupted.

Remedy: $\quad-$ check the interconnection of the binector input for "master control by PLC" (p0854).

- check the "master control by PLC" signal and, if required, switch in.
- check the data transfer via the fieldbus (master/drive).

Note:
If the drive should continue to operate after withdrawing "master control by PLC" then fault response must be parameterized to NONE or the message type should be parameterized as alarm.

F07300 (A)	Drive: Line contactor feedback signal missing
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	- the line contactor was not able to be closed within the time in p0861.
	- the line contactor was not able to be opened within the time in p0861.
	- the line contactor dropped out during operation
- the line contactor has closed although the drive converter is powered down.	
Remedy:	- check the setting of p0860.
	- check the feedback circuit from the line contactor.
	- increase the monitoring time in p0861.
	See also: p0860 (Line contactor feedback signal), p0861 (Line contactor monitoring time)

F07320	Drive: Automatic restart interrupted
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	- The specified number of restart attempts (p 1211) has been completely used up because within the monitoring time (p 1213) the faults were not able to be acknowledged. The number of restart attempts (p 1211) is decremented at each new start attempt.
	- there is no active ON command.
	- the monitoring time for the power unit has expired (p0857).
	- when exiting commissioning or at the end of the motor identification routine or the speed controller optimization, the drive unit is not automatically powered up again.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- increase the number of restart attempts (p1211). The actual number of starting attempts is displayed in r1214. - increase the delay time in p1212 and/or the monitoring time in p1213.
	- issue an ON command (p0840).
	- either increase or disable the monitoring time of the power unit (p0857).
	- Reduce the delay time for resetting the start counter (p1213[1]) so that fewer faults are registered in the time interval.

A07321	Drive: Automatic restart active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The automatic restart (AR) is active. When the line supply returns and/or the causes of the existing faults are removed the drive is automatically restarted. The pulses are enabled and the motor starts to rotate. For p1210 = 26, the alarm after the line supply returns is also displayed if there is no fault and there is no ON command. Restarting is realized with the delayed setting of the ON command.
Remedy:	- the automatic restart (AR) should, if required, be inhibited (p1210 = 0). - an automatic restart can be directly interrupted by withdrawing the power-on command (BI: p0840). - for p1210 = 26: by withdrawing the OFF2- / OFF3 control commands.

F07330	Flying restart: Measured search current too low
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	During a flying restart, it was identified that the search current reached is too low. It is possible that the motor is not connected.
Remedy:	Check the motor feeder cables.

F07331	Flying restart: Function not supported
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	It is not possible to power up with the motor rotating (no flying restart). In the following cases, the "flying restart" function is not supported:
	Perm.-magnet synch. motors (PEM): operation with U/f char. and sensorless vector control. Remedy:
	De-activate the "flying restart" function (p1200 = 0).

A07352 Drive: Limit switch signals not plausible
Reaction: NONE
Acknowledge: NONE

Cause: Limit switch signals are not plausible.
Possible causes:

- BICO interconnections are not OK (p3342, p3343).
- sensors are not supplying a valid signal (both supply a 0 signal).

Remedy: - check the BICO interconnections for the limit switch signals.

- check the sensors.

See also: p3342 (Limit switch plus), p3343 (Limit switch minus)

A07400 (N)	Drive: DC link voltage maximum controller active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated because the upper switch-in threshold has been exceeded (r1242,
	r1282).
	The ramp-down times are automatically increased in order to maintain the DC link voltage (r0070) within the
permissible limits. There is a system deviation between the setpoint and actual speeds.	
	When the DC link voltage controller is switched out (disabled), this is the reason that the ramp-function generator output is set to the speed actual value. See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller configuration (vector control)), p1280 (Vdc controller or Vdc monitoring configuration (U/f)) If the controller is not to intervene: Remedy:
	- increase the ramp-down times.
	- switch-off the Vdc_max controller (p1240 = 0 for vector control, p1280 = 0 for U/f control).
If the ramp-down times are not to be changed:	
	- use a chopper or regenerative feedback unit.

A07401 (N)	Drive: DC link voltage maximum controller de-activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The Vdc_max controller can no longer maintain the DC link voltage (r0070) below the limit value (r1242, r1282) and
	was therefore switched out (disabled).
	- the line supply voltage is permanently higher than specified for the power unit.
- the motor is permanently in the regenerative mode as a result of a load that is driving the motor.	
Remedy:	- check whether the input voltage is within the permissible range.
	- check whether the load duty cycle and load limits are within the permissible limits.

A07402 (N)	Drive: DC link voltage minimum controller active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage controller has been activated as the lower switch-in threshold has been undershot (r1246,
	r1286).
	The kinetic energy of the motor is used to buffer the DC link. The drive is therefore braked.
	See also: r0056 (Status word, closed-loop control), p1240 (Vdc controller configuration (vector control)), p1280 (Vdc controller or Vdc monitoring configuration (U/f))
Remedy:	The alarm disappears when power supply returns.

F07404 Drive: DC link voltage monitoring Vdc_Max
Reaction: OFF2 (NONE, OFF1, OFF3)

Acknowledge:	IMMEDIATELY
Cause:	The monitoring of the DC link voltage p1284 has responded (only U/f control).

Remedy: \quad - check the line supply voltage. \quad - check the braking module. \quad - adapt the device supply voltage (p0210). \quad - adapt the DC link voltage monitoring (p1284).

F07405 (N, A)	Drive: Kinetic buffering minimum speed not reached
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	During kinetic buffering the speed fell below minimum speed (p1257 or p1297 for vector drives with U/f control) and the line supply did not return.
Remedy:	Check the speed threshold for the Vdc_min controller (kinetic buffering) (p1257, p1297).

3.2 List of faults and alarms

F07406 (N, A)	Drive: Kinetic buffering maximum time exceeded
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The maximum buffer time (p1255 and p1295 for vector drives with U/f control) has been exceeded without the line supply having returned. Check the time threshold for Vdc-min controller (kinetic buffering) (p1255, p1295). Semedy:
	See also: p1255 (Vdc_min controller time threshold)

A07409	Drive: U/f control, current limiting controller active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The current limiting controller of the U/f control was activated because the current limit was exceeded.
Remedy:	The alarm automatically disappears after one of the following measures:
	- increase current limit (p0640).
	- reduce the load.
	- slow down the ramp up to the setpoint speed.

F07410	Drive: Current controller output limited
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	The condition "I_act = 0 and Uq_set_1 longer than 16 ms at its limit" is present and can be caused by the following: - motor not connected or motor contactor open. - motor data and motor configuration (star-delta) do not match. - no DC link voltage present. - power unit defective. - the "flying restart" function is not activated.
Remedy:	- connect the motor or check the motor contactor. - check the motor parameterization and the connection type (star-delta). - check the DC link voltage (r0070). - check the power unit. - activate the "flying restart" function (p1200).
F07411	Drive: Flux controller output limited
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	When quick magnetizing is configured (p1401.6 =1) the specified flux setpoint is not reached although 90% of the maximum current is specified. - incorrect motor data. - motor data and motor configuration (star-delta) do not match. - the current limit has been set too low for the motor. - induction motor (encoderless, open-loop controlled) in I2t limiting. - power unit is too small. - the magnetizing time is too short.
Remedy:	- correct the motor data. Perform motor data identification and rotating measurement. - check the motor configuration. - correct the current limits (p0640). - reduce the induction motor load. - if necessary, use a larger power unit. - check motor supply cable. - check power unit. - increase p0346.

A07416	Drive: Flux controller configuration
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration of the flux control (p1401) is contradictory.
	Alarm value (r2124, interpret hexadecimal):
	ccbbaaaa hex
	aaaa $=$ Parameter
	$\mathrm{bb}=$ Index
	cc = fault cause
	1: Quick magnetizing (p1401.6) for soft starting (p1401.0).
	2: Quick magnetizing for flux build-up control (p1401.2).
	3: Quick magnetizing (p1401.6) for Rs identification after restart ($\mathrm{p} 0621=2$).
Remedy:	Re fault cause $=1$:
	- Shut down soft start (p1401.0 = 0).
	- Shut down quick magnetizing (p1401.6 = 0).
	Re fault cause $=2$:
	- De-energize flux build-up control (p1401.2 = 0).
	- Shut down quick magnetizing (p1401.6 = 0).
	Re fault cause $=3$:
	- Re-parameterize Rs identification (p0621 = 0, 1)
	- Shut down quick magnetizing (p1401.6 = 0).
F07426 (A)	Technology controller actual value limited
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The actual value for the technology controller, interconnected via connector input p2264, has reached a limit.
	Fault value (r0949, decimal interpretation):
	1: upper limit reached.
	2: lower limit reached.
Remedy:	- adapt the limits to the signal level (p2267, p2268).
	- Check the actual value normalization (p0595, p0596).
	- Deactivate evaluation of the limits (p2252 bit 3)
	See also: p0595 (Technological unit selection), p0596 (Technological unit reference quantity), p2264 (Technology controller actual value), p2267 (Technology controller upper limit actual value), p2268 (Technology controller lower limit actual value)
A07428 (N)	Technology controller parameterizing error
Reaction:	NONE
Acknowledge:	NONE
Cause:	The technology controller has a parameterizing error.
	Alarm value (r2124, interpret decimal):
	$1:$
	The upper output limit in p2291 is set lower than the lower output limit in p2292.
Remedy:	Re alarm value $=1$:
	Set the output limit in p2291 higher than in p2292.
	See also: p2291 (Technology controller maximum limiting), p2292 (Technology controller minimum limiting)
F07435 (N)	Drive: Setting the ramp-function generator for sensorless vector control
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	During operation with sensorless vector control (r1407.1) the ramp-function generator was stopped (p1141). An internal setting command of the ramp-function generator output caused the set setpoint speed to be frozen.
Remedy:	- de-activate the holding command for the ramp-function generator (p1141).
	- suppress the fault (p2101, p2119). This is necessary if the ramp-function generator is held using jogging and the speed setpoint is simultaneously inhibited (r0898.6).

A07530	Drive: Drive Data Set DDS not present
Reaction:	NONE
Acknowledge:	NONE
Cause:	The selected drive data set is not available (p0837 > p0180). The drive data set was not changed over. See also: p0180 (Number of Drive Data Sets (DDS)), p0820 (Drive Data Set selection DDS bit 0), p0821 (Drive Data Set selection DDS bit 1), r0837 (Drive Data Set DDS selected)
Remedy:	- select the existing drive data set. - set up additional drive data sets.
A07531	Drive: Command Data Set CDS not present
Reaction:	NONE
Acknowledge:	NONE The selected command data set is not available (p0836 > p0170). The command data set was not changed over.
	See also: p0810 (Command data set selection CDS bit 0), p0811 (Command data set selection CDS bit 1), r0836 (Command Data Set CDS selected)
Remedy:	- select the existing command data set.
	- set up additional command data sets.

F07563 (A)	Drive encoder: XIST1_ERW configuration incorrect
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP1, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An incorrect configuration was identified for the "Absolute position for incremental encoder" function.
	Fault value (r0949, decimal interpretation):
	Fault cause:
	1 (=01 hex):
	The "Absolute value for incremental encoder" function is not supported (r0459.13 = 0).
	Note regarding the message value:
	The individual information is coded as follows in the message value $(\mathrm{r0949/r2124):}$
	yyxx dec: yy = fault cause, xx = encoder data set
Remedy:	For fault value = 1:
	- upgrade the Sensor Module firmware version.
	- check the mode (p4652 = 1, 3 requires the property r0459.13 = 1).

F07800	Drive: No power unit present
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The power unit parameters cannot be read or no parameters are stored in the power unit.
	It is possible that the DRIVE-CLiQ cable between the Control Unit and power unit is interrupted or defective.
	Note:
	This fault also occurs if an incorrect topology was selected in the commissioning software and this parameterization
is then downloaded to the Control Unit.	
Remedy:	See also: r0200 (Power unit code number actual)
	- carry out a POWER ON (power off/on) for all components.
	- check the DRIVE-CLiQ cable between the Control Unit and power unit.
	- Check the power unit and replace if necessary.
	- check the Control Unit, and if required replace it.
	- after correcting the topology, the parameters must be again downloaded using the commissioning software.

F07801 Drive: Motor overcurrent

Reaction: OFF2 (NONE, OFF1, OFF3)
Acknowledge: IMMEDIATELY
Cause: The permissible motor limit current was exceeded.

- effective current limit set too low.
- current controller not correctly set.
- U/f operation: Up ramp was set too short or the load is too high.
- U/f operation: Short-circuit in the motor cable or ground fault.

Remedy:	- U/f operation: Motor current does not match current of power unit.
	- Switch to rotating motor without flying restart function (p1200).
	Note:
	Limit current $=2 \times$ minimum (p0640, $4 \times \mathrm{p} 0305 \times \mathrm{p} 0306)>=2 \times \mathrm{p} 0305 \times \mathrm{p} 0306$ - check the current limits (p0640).
	- vector control: Check the current controller (p1715, p1717).
	- U/f control: Check the current limiting controller (p1340 ... p1346).
	- increase the up ramp (p1120) or reduce the load.
	- check the motor and motor cables for short-circuit and ground fault.
	- check the motor for the star-delta configuration and rating plate parameterization.
	- check the power unit and motor combination.
	- Choose "flying restart" function (p1200) if switched to rotating motor.
F07802	Drive: Infeed or power unit not ready
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	After an internal power-on command, the infeed or drive does not signal ready.
	- monitoring time is too short.
	- DC link voltage is not present.
	- associated infeed or drive of the signaling component is defective.
	- supply voltage incorrectly set.
Remedy:	- increase the monitoring time (p0857).
	- ensure that there is a DC link voltage. Check the DC link busbar. Enable the infeed.
	- replace the associated infeed or drive of the signaling component.
	- check the line supply voltage setting (p0210).
	See also: p0857 (Power unit monitoring time)

A07805 (N)	Drive: Power unit overload I2t
Reaction:	NONE
Acknowledge:	NONE
Cause:	Alarm threshold for l2t overload (p0294) of the power unit exceeded.
	The response parameterized in p0290 becomes active.
Remedy:	See also: p0290 (Power unit overload response)
	- reduce the continuous load.
	- adapt the load duty cycle.
	- check the assignment of the motor and power unit rated currents.

F07806	Drive: Regenerative power limit exceeded (F3E)
Reaction:	OFF2 (IASC/DCBRK)
Acknowledge:	IMMEDIATELY
Cause:	For blocksize power units, types PM250 and PM260, the regenerative rated power r0206[2] was exceeded for more
than 10 s.	
	See also: r0206 (Rated power unit power), p1531 (Power limit regenerative)
Remedy:	- increase the down ramp.
	- reduce the driving load.
	- use a power unit with a higher regenerative feedback capability.
	- for vector control, the regenerative power limit in p1531 can be reduced so that the fault is no longer triggered.
F07807	Drive: Short-circuit/ground fault detected
Reaction:	OFF2 (NONE)
Acknowledge:	IMMEDIATELY
Cause:	A phase-phase short-circuit or ground fault was detected at the motor-side output terminals of the converter.
	Fault value (r0949, decimal interpretation):
	1: Short-circuit, phases U-V
	2: Short-circuit, phases U-W
	3: Short-circuit, phases V-W

3 Faults and alarms

3.2 List of faults and alarms

	4: Ground fault with overcurrent
	1xxxx: Ground fault with current in phase U detected ($x x x x=$ component of the current in phase V in per mille)
	2 xxxx : Ground fault with current in phase V detected ($x x x x=$ component of the current in phase U in per mille)
	Note:
	Also when interchanging the line and motor cables is identified as a motor-side short circuit.
Remedy:	Connecting to a motor that is either not de-energized or partially de-energized is possibly detected as ground fault. - check the motor-side converter connection for a phase-phase short-circuit.
	- rule-out interchanged line and motor cables.
	- check for a ground fault.
	For a ground fault:
	- do not enable the pulses when connecting to a rotating motor without the "Flying restart" function activated (p1200).
	- increase the de-energization time (p0347).
	- If required, deactivate the monitoring (p1901).
F07808 (A)	HF damping module: damping not ready
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	When switching on or in the switched-on state, the HF damping module does not return a ready signal.
Remedy:	- Check the DRIVE-CLiQ wiring to the HF damping module.
	- check the 24 V supply voltage.
	- if required, replace the HF damping module.
	Note:
	HF Damping Module
F07810	Drive: Power unit EEPROM without rated data
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	No rated data are stored in the power unit EEPROM.
	See also: p0205 (Power unit application), r0206 (Rated power unit power), r0207 (Rated power unit current), r0208 (Rated power unit line supply voltage), r0209 (Power unit maximum current)
Remedy:	Replace the power unit or inform Siemens Customer Service.
A07850 (F)	External alarm 1
Reaction:	NONE
Acknowledge:	NONE
Cause:	The BICO signal for "external alarm 1" was triggered.
	The condition for this external alarm is fulfilled.
	See also: p2112 (External alarm 1)
Remedy:	Eliminate the causes of this alarm.

A07851 (F)	External alarm 2
Reaction:	NONE
Acknowledge:	NONE
Cause:	The BICO signal for "external alarm 2" was triggered.
	The condition for this external alarm is fulfilled.
	See also: p2116 (External alarm 2)
Remedy:	Eliminate the causes of this alarm.

A07852 (F)	External alarm 3
Reaction:	NONE
Acknowledge:	NONE
Cause:	The BICO signal for "external alarm 3" was triggered.
	The condition for this external alarm is fulfilled.
	See also: p2117 (External alarm 3)
Remedy:	Eliminate the causes of this alarm.

F07860 (A)	External fault 1
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The BICO signal "external fault 1" was triggered.
	See also: p2106 (External fault 1)
Remedy:	Eliminate the causes of this fault.
F07861 (A)	External fault 2
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The BICO signal "external fault 2" was triggered.
	See also: p2107 (External fault 2)
Remedy:	Eliminate the causes of this fault.
F07862 (A)	External fault 3
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The BICO signal "external fault 3" was triggered.
	See also: p2108 (External fault 3), p3111 (External fault 3 enable), p3112 (External fault 3 enable negated)
Remedy:	Eliminate the causes of this fault.
F07900 (N, A)	Drive: Motor blocked
Reaction:	OFF2 (NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	Motor has been operating at the torque limit longer than the time specified in p2177 and below the speed threshold set in p2175.
	This signal can also be triggered if the speed is oscillating and the speed controller output repeatedly goes to its limit. It may also be the case that thermal monitoring of the power unit reduces the current limit (see p0290), thereby causing the motor to decelerate.
	See also: p2175 (Motor blocked speed threshold), p2177 (Motor blocked delay time)
Remedy:	- check that the motor can freely move.
	- check the effective torque limit (r1538, r1539).
	- check the parameter, message "Motor blocked" and if required, correct (p2175, p2177).
	- check the direction of rotation enable signals for a flying restart of the motor (p1110, p1111).
	- for U/f control: check the current limits and acceleration times (p0640, p1120).
F07901	Drive: Motor overspeed
Reaction:	OFF2 (IASC/DCBRK)
Acknowledge:	IMMEDIATELY
Cause:	The maximum permissible speed was either positively or negatively exceeded.
	The maximum permissible positive speed is formed as follows: Minimum (p1082, CI: p1085) + p2162
	The maximum permissible negative speed is formed as follows: Maximum (-p1082, CI: 1088) - p2162
Remedy:	The following applies for a positive direction of rotation: - check r1084 and if required, correct p1082, CI:p1085 and p2162.
	The following applies for a negative direction of rotation:
	- check r1087 and if required, correct p1082, Cl:p1088 and p2162.
	Activate pre-control of the speed limiting controller (p1401.7 = 1).
	Increase the hysteresis for the overspeed signal p2162. This upper limit is dependent upon the maximum motor speed p0322 and the maximum speed p1082 of the setpoint channel.

F07902 (N, A)	Drive: Motor stalled
Reaction:	OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The system has identified that the motor has stalled for a time longer than is set in p2178.
	Fault value (r0949, decimal interpretation):
	1: Reserved.
	2: Stall detection using r1408.12 (p1745) or via (r0084- r0083).
Semealso: p2178 (Motor stalled delay time)	

A07903	Drive: Motor speed deviation
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute value of the speed difference from the setpoint (p2151) and the speed actual value (r2169) exceeds the
tolerance threshold (p2163) longer than tolerated (p2164, p2166).	
	The alarm is only enabled for p2149.0 $=1$.
	Possible causes:
	- the load torque is greater than the torque setpoint.
	- when accelerating, the torque/current/power limit is reached. If the limits are not sufficient, then it is possible that the
drive has been dimensioned too small.	
	- for closed-loop torque control, the speed setpoint does not track the speed actual value.
	- for active Vdc controller.
	For U/f control, the overload condition is detected as the I_max controller is active.
	See also: p2149 (Monitoring configuration)
	- increase p2163 and/or p2166.
Remedy:	- increase the torque/current/power limits.
	- for closed-loop torque control: The speed setpoint should track the speed actual value.
	- de-activate alarm with p2149.0 $=0$.

- check KTY84.
- check overtemperatures of the motor temperature model 2 (p0626 ... p0628).

See also: p0612 (Mot_temp_mod activation), p0625 (Motor ambient temperature), p0626 (Motor overtemperature, stator core), p0627 (Motor overtemperature, stator winding), p0628 (Motor overtemperature rotor winding)

A07920	Drive: Torque/speed too low
Reaction:	NONE
Acknowledge:	NONE
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too low).
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too low).
	See also: p2181 (Load monitoring response) - check the connection between the motor and load. Remedy: \quad- adapt the parameterization corresponding to the load.

A07921	Drive: Torque/speed too high
Reaction:	NONE
Acknowledge:	NONE
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too high).
	For p2193 = 2:
The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too high).	
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.

A07922	Drive: Torque/speed out of tolerance
Reaction:	NONE
Acknowledge:	NONE
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic.
	For p2193 = 2:
The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169).	
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.

F07923 Drive: Torque/speed too low
Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: \quad For p2193 = 1:

The torque deviates from the torque/speed envelope characteristic (too low).
For p2193 = 2:
The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too low).
Remedy: - check the connection between the motor and load.

- adapt the parameterization corresponding to the load.

F07924	Drive: Torque/speed too high
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic (too high).
	For p2193 = 2:
	The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169) (too high).
Remedy:	- check the connection between the motor and load.
	- adapt the parameterization corresponding to the load.

3.2 List of faults and alarms

F07925	Drive: Torque/speed out of tolerance
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	For p2193 = 1:
	The torque deviates from the torque/speed envelope characteristic.
	For p2193 = 2:
The speed signal from the external encoder (refer to p3230) deviates from the speed (r2169).	
Remedy:	- check the connection between the motor and load. - adapt the parameterization corresponding to the load.

A07927	DC braking active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor is braked with DC current. DC braking is active.
	1)

A message with response DCBRK is active. The motor is braked with the braking current set in p1232 for the duration set in in p1233. If the standstill threshold p1226 is undershot, then braking is prematurely canceled.
2)

DC braking has been activated at binector input p1230 with the DC braking set ($p 1230=4$). Braking current p1232 is injected until this binector input becomes inactive.
Remedy:
Not necessary.
The alarm automatically disappears once DC braking has been executed.

A07929 (F)	Drive: No motor detected
Reaction:	NONE
Acknowledge:	NONE
Cause:	The absolute current value is so small after enabling the inverter pulses that no motor is detected.
	Note:
	In the case of vector control and an induction motor, this alarm is followed by the fault F07902.
	See also: p2179 (Output load identification current limit)
Remedy:	- check the motor feeder cables.
	- reduce the threshold value (p2179), e.g. for synchronous motors.
- check the voltage boost of the U/f control (p1310).	
- carry out a standstill measurement to set the stator resistance (p0350).	

F07936 Drive: load failure

Reaction: OFF1 (NONE, OFF2, OFF3)
Acknowledge: IMMEDIATELY
Cause: \quad The load monitoring has detected a load failure.
Remedy: - check the sensor.

- if necessary, de-activate the load monitoring (p2193).

See also: p2193 (Load monitoring configuration), p3232 (Load monitoring failure detection)

F07950 (A)	Motor parameter incorrect
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	The motor parameters were incorrectly entered while commissioning (e.g. p0300 = 0, no motor)
	Fault value (r0949, decimal interpretation):
	Parameter number involved.
	See also: p0300, p0301, p0304, p0305, p0307, p0310, p0311, p0314, p0320, p0322
Remedy:	Compare the motor data with the rating plate data and if required, correct.

F07967	Drive: Pole position identification internal fault
Reaction:	OFF2 (NONE, OFF1)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine.
	Only for internal Siemens troubleshooting.
Remedy:	Carry out a POWER ON.
F07968	Drive: Lq-Ld measurement incorrect
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the Lq-Ld measurement.
	Fault value (r0949, decimal interpretation):
	10: Stage 1: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
Remedy:	For fault value $=10$:
	Check whether the motor is correctly connected.
	Replace the power unit involved.
	De-activate technique (p1909).
	For fault value = 12:
	Check whether motor data have been correctly entered.
	De-activate technique (p1909).
	For fault value = 16:
	De-activate technique (p1909).
	For fault value = 17:
	Repeat technique.
F07969	Drive: Incorrect pole position identification
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred during the pole position identification routine.
	Fault value (r0949, decimal interpretation):
	1: Current controller limited
	2: Motor shaft locked.
	10: Stage 1: The ratio between the measured current and zero current is too low.
	11: Stage 2: The ratio between the measured current and zero current is too low.
	12: Stage 1: The maximum current was exceeded.
	13: Stage 2: The maximum current was exceeded.
	14: Current difference to determine the +d axis too low.
	15: Second harmonic too low.
	16: Drive converter too small for the measuring technique.
	17: Abort due to pulse inhibit.
	18: First harmonic too low.
	20: Pole position identification requested with the motor shaft rotating and activated "flying restart" function.
Remedy:	For fault value $=1$:
	Check whether the motor is correctly connected.
	Check whether motor data have been correctly entered.
	Replace the power unit involved.
	For fault value $=2$:
	Bring the motor into a no-load condition.

3 Faults and alarms

3.2 List of faults and alarms

For fault value $=10$:
When selecting p1980 = 4: Increase the value for p0325.
When selecting p1980 = 1: Increase the value for p0329.
Check whether the motor is correctly connected.
Replace the power unit involved.
For fault value $=11$:
Increase the value for 00329 .
Check whether the motor is correctly connected.
Replace the power unit involved.
For fault value $=12$:
When selecting p1980 = 4: Reduce the value for p 0325 .
When selecting p1980 = 1: Reduce the value for p0329.
Check whether motor data have been correctly entered.
For fault value = 13:
Reduce the value for p0329.
Check whether motor data have been correctly entered.
For fault value $=14$:
Increase the value for p 0329 .
For fault value $=15$:
Increase the value for p0325.
Motor not sufficiently anisotropic, change the technique (p1980 = 1 or 10).
For fault value = 16:
Change the technique (p1980).
For fault value $=17$:
Repeat technique.
For fault value $=18$:
Increase the value for p0329.
Saturation not sufficient, change the technique $(\mathrm{p} 1980=10)$.
For fault value $=20$:
Before carrying out a pole position identification routine ensure that the motor shaft is absolutely stationary (zero speed).

A07976	Drive: Fine encoder calibration activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm indicates the phases of the fine encoder calibration using the alarm value.
	Alarm value (interpret decimal):
	1: Fine encoder calibration active.
	2: Rotating measurement started (set the setpoint speed $>40 \%$ rated motor speed).
	3: Rotating measurement lies within the speed and torque range.
	4: Rotating measurement successful: pulse inhibit can be initiated to accept the values.
	5: Fine encoder calibration is calculated.
	10: Speed too low, rotating measurement interrupted.
	12: Torque too high, rotating measurement interrupted.
	Re alarm value $=10:$
	Increase the speed.
	Re alarm value $=12:$
	Bring the drive into a no-load condition.

A07980	Drive: Rotating measurement activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement (automatic speed controller optimization) is activated.
	The rotating measurement is carried out at the next power-on command.

	Note:
	During the rotating measurement it is not possible to save the parameters (p0971).
	See also: p1960 (Rotating measurement selection)
Remedy:	Not necessary.
	The alarm disappears automatically after the speed controller optimization has been successfully completed or for the setting p1900 $=0$.
A07981	Drive: Enable signals for the rotating measurement missing
Reaction:	NONE
Acknowledge:	NONE
Cause:	The rotating measurement cannot be started due to missing enable signals.
	For p1959.13 = 1, the following applies:
	- enable signals for the ramp-function generator missing (see p1140 ... p1142).
	- enable signals for the speed controller integrator missing (see p1476, p1477).
Remedy:	- acknowledge faults that are present.
	- establish missing enable signals.
	See also: r0002 (Drive operating display), r0046 (Missing enable sig)
F07983	Drive: Rotating measurement saturation characteristic
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while determining the saturation characteristic.
	Fault value (r0949, decimal interpretation):
	1: The speed did not reach a steady-state condition.
	2: The rotor flux did not reach a steady-state condition.
	3: The adaptation circuit did not reach a steady-state condition.
	4: The adaptation circuit was not enabled.
	5: Field weakening active.
	The speed setpoint was not able to be approached as the minimum limiting is active.
	The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	The speed setpoint was not able to be approached as the maximum limiting is active.
	9: Several values of the determined saturation characteristic are not plausible.
	10: Saturation characteristic could not be sensibly determined because load torque too high.
Remedy:	For fault value $=1$:
	- the total drive moment of inertia is far higher than that of the motor (p0341, p0342).
	De-select rotating measurement (p 1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 $=4$ and repeat the measurement.
	Re fault value = $1 \ldots 2$:
	- increase the measuring speed (p1961) and repeat the measurement.
	Re fault value = $1 . . .4$:
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 $=3$.
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967<25\%).
	For fault value $=5$:
	- the speed setpoint (p1961) is too high. Reduce the speed.
	For fault value $=6$:
	- adapt the speed setpoint (p1961) or minimum limiting (p1080).
	For fault value = 7:
	- adapt the speed setpoint (p1961) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
	For fault value = 8:
	- adapt the speed setpoint (p1961) or maximum limit (p1082, p1083 and p1086).

Re fault value $=9,10$:

- the measurement was carried out at an operating point where the load torque is too high. Select a more suitable operating point, either by changing the speed setpoint (p1961) or by reducing the load torque. The load torque may not be varied while making measurements.
Note:
The saturation characteristic identification routine can be disabled using p1959.1.
See also: p1959 (Rotating measurement configuration)

F07984	Drive: Speed controller optimization, moment of inertia
Reaction:	OFF1 (NONE, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A fault has occurred while identifying the moment of inertia.
	Fault value (r0949, decimal interpretation):
	1: The speed did not reach a steady-state condition.
	2: The speed setpoint was not able to be approached as the minimum limiting is active.
	3. The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.
	4. The speed setpoint was not able to be approached as the maximum limiting is active.
	5: It is not possible to increase the speed by 10% as the minimum limiting is active.
	6: It is not possible to increase the speed by 10% as the suppression (skip) bandwidth is active.
	7 : It is not possible to increase the speed by 10% as the maximum limiting is active.
	8: The torque difference after the speed setpoint step is too low in order to be able to still reliably identify the moment of inertia.
	9: Too few data to be able to reliably identify the moment of inertia.
	10: After the setpoint step, the speed either changed too little or in the incorrect direction.
	11: The identified moment of inertia is not plausible.
Remedy:	For fault value = 1 :
	- check the motor parameters (rating plate data). After the change: Calculate p0340 $=3$.
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 .
	- carry out a motor data identification routine (p1910).
	- if required, reduce the dynamic factor (p1967<25\%).
	Re fault value $=2,5$:
	- adapt the speed setpoint (p1965) or adapt the minimum limit (p1080).
	Re fault value $=3,6$:
	- adapt the speed setpoint (p1965) or suppression (skip) bandwidths (p1091 ... p1094, p1101).
	Re fault value $=4,7$:
	- adapt the speed setpoint (p1965) or maximum limit (p1082, p1083 and p1086).
	For fault value = 8:
	- the total drive moment of inertia is far higher than that of the motor (refer to p0341, p0342). De-select rotating measurement (p1960), enter the moment of inertia p0342, re-calculate the speed controller p0340 = 4 and repeat the measurement.
	For fault value = 9:
	- check the moment of inertia (p0341, p0342). After the change, re-calculate (p0340 = 3 or 4).
	For fault value = 10:
	- check the moment of inertia (p0341, p0342). After the change: Calculate p0340 = 3 .
	Note:
	The moment of inertia identification routine can be disabled using p1959.2.
	See also: p1959 (Rotating measurement configuration)

F07985
Reaction:
Acknowledge:
Cause:

Drive: Speed controller optimization (oscillation test) OFF1 (NONE, OFF2) IMMEDIATELY
A fault has occurred during the vibration test.
Fault value (r0949, decimal interpretation):
1: The speed did not reach a steady-state condition.
2: The speed setpoint was not able to be approached as the minimum limiting is active.
3: The speed setpoint was not able to be approached as the suppression (skip) bandwidth is active.

	30: Current controller in voltage limiting.
	40: At least one identification contains errors. The identified parameters are not saved to prevent inconsistencies.
	50: The selected sampling time is too low for the motor identification (p0115[0]).
	Note:
	Percentage values are referred to the rated motor impedance:
	Zn = Vmot.nom / sqrt(3) / Imot, nom
Remedy:	Re fault value = $1 . . .40$:
	- check whether motor data have been correctly entered in p0300, p0304 ... p0311.
	- is there an appropriate relationship between the motor power rating and that of the power unit? The ratio of the power unit to the rated motor current should not be less than 0.5 and not be greater than 4 .
	- check connection type (star-delta).
	Re fault value $=4,7$:
	- check whether the inductance in p0233 is correctly set.
	- check whether motor has been correctly connected (star-delta).
	Re fault value = 11 in addition:
	- Deactivate oscillation monitoring (p1909.7 = 1).
	For fault value = 12:
	- check the power cable connections.
	- check the motor.
	- check the CT.
	For fault value $=50$:
	- Perform a motor data identification with a higher sampling time, and after this, change to the required higher sampling time ($\mathrm{p} 0115[0]$).

A07991 (N)	Drive: Motor data identification activated
Reaction:	NONE
Acknowledge:	NONE
Cause:	The motor data identification routine is activated.
	The motor data identification routine is carried out at the next power-on command.
	If rotating measurement is selected (see p1900, p1960), it will not be possible to save the parameter assignment. Once motor data identification has been completed or de-activated, the option to save the parameter assignment will be made available again. See also: p1910 (Motor data identification selection)
Remedy:	Not necessary. The alarm automatically disappears after the motor data identification routine has been successfully completed or for the setting p1900 = 0.

A07994 (F, N)	Drive: motor data identification not performed
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "vector control" mode has been selected and a motor data identification has still not been performed.
	The alarm is initiated when changing the drive data set (see r0051) in the following cases:
	- vector control is parameterized in the actual drive data set ($\mathrm{p} 1300>=20$).
	and
	- motor data identification has still not been performed in the actual drive data set (see r 3925).
	Note:

For SINAMICS G120, a check is made and an alarm is output also when exiting commissioning and when the system powers up.
Remedy: - Perform motor data identification (see p1900).

- If required, parameterize "U/f control" (p1300 < 20).
- switch over to a drive data set, in which the conditions do not apply.

F08010 (N, A) CU: Analog-to-digital converter

Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The analog-to-digital converter on the Control Unit has not supplied any converted data.

```
Remedy: - check the power supply.
    - replace Control Unit
```

F08501 (N, A)	PROFINET: Setpoint timeout
Reaction:	OFF3 (IASC/DCBRK, NONE, OFF1, OFF2, STOP1, STOP2)
Acknowledge:	IMMEDIATELY
Cause:	The reception of setpoints from PROFINET has been interrupted.
	- bus connection interrupted.
	- controller switched off.
- controller set into the STOP state.	
Remedy:	- Restore the bus connection and set the controller to RUN.
	- check the set monitoring time if the error persists.

F08502 (A)	PROFINET: Monitoring time sign-of-life expired
Reaction:	OFF1 (OFF2, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time for the sign-of-life counter has expired.
	The connection to the PROFINET interface was interrupted. Remedy:
	- carry out a POWER ON (power off/on). - contact the Hotline.

A08511 (F)	PROFINET: Receive configuration data invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	The drive unit did not accept the receive configuration data.
	Alarm value (r2124, interpret decimal):
	Return value of the receive configuration data check.
	2: Too many PZD data words for output or input to a drive object. Maximum of 12 words are possible.
	Uneven number of bytes for input or output.
	501: PROFIsafe parameter error (e.g. F_dest).
	502: PROFIsafe telegram does not match.
	Check the receive configuration data.
	Re alarm value $=2:$
	- Check the number of data words for output and input to a drive object.
	Re alarm value $=501:$
	- Check the set PROFIsafe address (p9610).
	Re alarm value $=502:$
	Check the enable of F-DI (p9501.30).

A08526 (F)	PROFINET: No cyclic connection
Reaction:	NONE
Acknowledge:	NONE
Cause:	There is no connection to a PROFINET controller.
Remedy:	Establish the cyclic connection and activate the controller with cyclic operation.
	Check the parameters "Name of Station" and "IP of Station" (r61000, r61001).

A08565	PROFINET: Consistency error affecting adjustable parameters
Reaction:	NONE
Acknowledge:	NONE
Cause:	A consistency error was detected when activating the configuration $(\mathrm{p} 8925=1)$ for the PROFINET interface. The currently set configuration has not been activated.
	Possible causes:

- IP address, subnet mask or default gateway is not correct
- IP address or station name used twice in the network
- station name contains invalid characters, etc.

3.2 List of faults and alarms

Remedy:	See also: p8920 (PN Name of Station), p8921 (PN IP address of station), p8922 (PN Default Gateway of Station), p8923 (PN Subnet Mask of Station) Check the required interface configuration (p8920 and following), correct if necessary, and activate (p8925 $=1$). See also: p8925 (PN interface configuration)
F08700 (A)	CAN: Communications error
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	A CAN communications error has occurred.
	Fault value (r0949, decimal interpretation):
	1: The error counter for the send telegrams has exceeded the BUS OFF value 255 . The bus disables the CAN controller.
	- bus cable short circuit.
	- incorrect baud rate.
	- incorrect bit timing.
	2: The master no longer interrogated the CAN node status longer than for its "life time". The "life time" is obtained from the "guard time" (p8604[0]) multiplied by the "life time factor" (p8604[1]).
	- bus cable interrupted.
	- bus cable not connected.
	- incorrect baud rate.
	- incorrect bit timing.
	- master fault.
	Note:
	The fault response can be set as required using p8641.
Remedy:	- check the bus cable
	- check the baud rate (p8622).
	- check the bit timing (p8623).
	- check the master.
	The CAN controller must be manually restarted with $\mathrm{p} 8608=1$ after the cause of the fault has been resolved!
F08701	CAN: NMT state change
Reaction:	OFF3
Acknowledge:	IMMEDIATELY
Cause:	A CANopen NMT state transition from "operational" to "pre-operational" or after "stopped".
	Fault value (r0949, decimal interpretation):
	1: CANopen NMT state transition from "operational" to "pre-operational".
	2: CANopen NMT state transition from "operational" to "stopped".
	Note:
	In the NMT state "pre-operational", process data cannot be transferred and in the NMT state "stopped", no process data and no service data can be transferred.
Remedy:	Not necessary.
	Acknowledge the fault and continue operation.
F08702 (A)	CAN: RPDO Timeout
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The monitoring time of the CANopen RPDO telegram has expired because the bus connection was either interrupted or the CANopen Master was switched-off.
Remedy:	- check the bus cable
	- check the master.
	- If required, increase the monitoring time (p8699).

F08703 (A)	CAN: Maximum number of drive objects exceeded
Reaction:	OFF3 (NONE, OFF1, OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The maximum number of 8 drive objects with the "CAN" function module was exceeded. Note:
Remedy:	In the CANopen standard only a maximum of 8 drive objects are defined for each CANopen slave. - New commissioning of maximum 8 drive objects with the "CAN" function module in the topology. - For the drive objects, if required, deselect the "CAN" function module (r0108.29).

A08751 (N)	CAN: Telegram loss
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CAN controller has lost a receive message (telegram).
Remedy:	Reduce the cycle times of the receive messages.

A08752	CAN: Error counter for error passive exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The error counter for the send or receive telegrams has exceeded the value 127.
Remedy:	- check the bus cable - set a higher baud rate (p8622). \quad - check the bit timing and if required optimize (p8623).

A08753	CAN: Message buffer overflow
Reaction:	NONE
Acknowledge:	NONE
Cause:	A message buffer overflow.
	Alarm value (r2124, interpret decimal):
	1: Non-cyclic send buffer (SDO response buffer) overflow.
	2: Non-cyclic receive buffer (SDO receive buffer) overflow.
	3: Cyclic send buffer (PDO send buffer) overflow.
Remedy:	- check the bus cable.
	- set a higher baud rate (p8622).
	- check the bit timing and if required optimize (p8623).
	Re alarm value $=2$:
	- reduce the cycle times of the SDO receive messages.
	- SDO request from master only after SDO feedback for previous SDO request.
A08754	CAN: Incorrect communications mode
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the "operational" mode, an attempt was made to change parameters p8700 ... p8737.
Remedy:	Change to the "pre-operational" or "stopped" mode.

A08755	CAN: Obj cannot be mapped
Reaction:	NONE
Acknowledge:	NONE
Cause:	The CANopen object is not provided for the Process Data Object (PDO) Mapping.
Remedy:	Use a CANopen object intended for the PDO mapping or enter 0.
	The following objects can be mapped in the Receive Process Data Object (RPDO) or Transmit Process Data Object
	(TPDO):
	- RPDO: 6040 hex, 6060 hex, 60FF hex, 6071 hex; 5800 hex $-580 F$ hex; 5820 hex -5827 hex
	- TPDO: 6041 hex, 6061 hex, 6063 hex, 6069 hex, 606 B hex, 606C hex, 6074 hex; 5810 hex -581F hex; 5830 hex -
	5837 hex
	Only sub-index 0 of the specified objects can be mapped.

Note:
As long as A08755 is present, the COB-ID cannot be set to valid.

A08756	CAN: Number of mapped bytes exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The number of bytes of the mapped objects exceeds the telegram size for net data. A max. of 8 bytes is permissible.
Remedy:	Map fewer objects or objects with a smaller data type.

A08757	CAN: Set COB-ID invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	For online operation, the appropriate COB-ID must be set invalid before mapping. Example: Mapping for RPDO 1 should be changed (p8710[0]). --> set p8700[0] = C00006E0 hex (invalid COB-ID) --> set p8710[0] as required. --> p8700[0] enter a valid COB-ID
Remedy:	Set the COB-ID to invalid.

A08758	CAN: Maximum number of valid PDO exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum number of valid PDO was exceeded.
	Fault value 1: RPDO
	The total number of valid RPDO of all axes is limited to 25 as a result of the hardware.
	Fault value 2: TPDO
	The total number of valid TPDO of all axes is limited by the ratio CAN sampling time (p8848) / current controller
	sampling (p115[0]).
	Deleting the alarm:
	- Power Off/On
	- Warm restart
	- CANopen NMT state change
	- reset alarm with p2111
	Do not exceed the maximum number of valid RPDO or TPDO.

A08759	CAN: PDO COB-ID already available
Reaction:	NONE
Acknowledge:	NONE
Cause:	An existing PDO COB-ID was allocated.
Remedy:	Select another PDO COB-ID.

A08760	CAN: maximum size of the PZD IF exceeded
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum size of the PZD interface exceeded.
	Fault value 1: receiving
	Fault value 2: sending
	Deleting the alarm:
	- Power Off/On
	- Warm restart
	- CANopen NMT state change
	- reset alarm with p2111
Remedy:	Map fewer process data in PDO.

A08800	PROFlenergy energy-saving mode active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The PROFlenergy energy-saving mode is active
	Alarm value (r2124, interpret decimal):
	Mode ID of the active PROFlenergy energy-saving mode.
Remedy:	The alarm automatically disappears when the energy-saving mode is exited.
	Note:
	After receiving the PROFlenergy command "End_Pause" via PROFINET, the energy-saving mode is exited.

A08802	PROFlenergy not possible to switch off incremental encoder supp
Reaction:	NONE
Acknowledge:	NONE
Cause:	The incremental encoder is used for the closed-loop position control. This means that
	switched off during the PROFlenergy energy-saving mode, otherwise it would lose its Alarm value (r2124, interpret decimal): Encoder number
	The alarm automatically disappears when the energy-saving mode is exited.
	Note:
	After receiving the PROFlenergy command "End_Pause" via PROFINET, the energy-say
F13009	Licensing OA application not licensed
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	At least one OA application which is under license does not have a license.
	Note:
	Refer to r4955 and p4955 for information about the installed OA applications.
Remedy:	- enter and activate the license key for OA applications under license (p9920, p9921).
	- if necessary, de-activate unlicensed OA applications (p4956).

F13100	Know-how protection: Copy protection error
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	The know-how protection with copy protection for the memory card is active.
	An error has occurred when checking the memory card.
	Fault value (r0949, decimal interpretation):
	0: A memory card is not inserted.
	1: An invalid memory card is inserted (not SIEMENS).
	2: An invalid memory card is inserted.
	3: The memory card is being used in another Control Unit.
	12: An invalid memory card is inserted (OEM input incorrect, p7769).
	13: The memory card is being used in another Control Unit (OEM input incorrect, p7759).
	See also: p7765 (KHP memory card copy protection)
	Re fault value = 0, 1:
	- Insert the correct memory card and carry out POWER ON.
	Re fault value = 2, 3, 12, 13:
	- contact the responsible OEM.
	- Deactivate copy protection (p7765) and acknowledge the fault (p3981).
	- Deactivate know-how protection (p7766 ... p7768) and acknowledge the fault (p3981).
	Note:
	In general, the copy protection can only be changed when know-how protection is deactivated.
	KHP: Know-How Protection
	See also: p3981 (Faults acknowledge drive object), p7765 (KHP memory card copy protection)

3.2 List of faults and alarms

F13101	Know-how protection: Copy protection cannot be activated
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	An error occurred when attempting to activate the copy protection for the memory card.
	Fault value (r0949, decimal interpretation):
	0 : A memory card is not inserted.
	1: An invalid memory card is inserted (not SIEMENS).
	Note:
	KHP: Know-How Protection
Remedy:	- Insert a valid memory card.
	- Try to activate copy protection again (p7765).
	See also: p7765 (KHP memory card copy protection)
F13102	Know-how protection: Consistency error of the protected data
Reaction:	OFF1
Acknowledge:	IMMEDIATELY
Cause:	An error was identified when checking the consistency of the protected files. As a consequence, the project on the memory card cannot be run.
	Fault value (r0949, interpret hexadecimal):
	yyyyxxxx hex: yyyy = object number, $x x x x=$ fault cause
	$x x x x=1$:
	A file has a checksum error.
	xxxx $=2$:
	The files are not consistent with one another.
	xxxx = 3 :
	The project files, which were loaded into the file system via load (download from the memory card), are inconsistent.
	Note:
	KHP: Know-How Protection
Remedy:	- Replace the project on the memory card or replace project files for download from the memory card.
	- Restore the factory setting and download again.
F30001	Power unit: Overcurrent
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overcurrent condition.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- High discharge and post-charging current for line supply voltage interruptions.
	- High post-charging currents for overload when motoring and DC link voltage dip.
	- Short-circuit currents at power-on due to the missing line reactor.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	- line phase interrupted.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
	Bit 3: Overcurrent in the DC link.
	Note:
	Fault value $=0$ means that the phase with overcurrent is not recognized.

Remedy:	- check the motor data - if required, carry out commissioning. - check the motor circuit configuration (star/delta). - U/f operation: Increase up ramp. - U/f operation: Check assignment of rated currents of motor and power unit. - check the line supply quality. - Reduce motor load. - Correct connection of line reactor. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables. - replace power unit. - check the line supply phases.
F30002	Power unit: DC link voltage overvoltage
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an overvoltage condition in the DC link. - motor regenerates too much energy. - line supply voltage too high. - line phase interrupted. - DC-link voltage control switched off. - dynamic response of DC-link voltage controller excessive or insufficient. Fault value (r0949, decimal interpretation): DC link voltage at the time of trip [0.1 V].
Remedy:	-increase the ramp-down time (p1121). - set the rounding times ($p 1130, \mathrm{p} 1136$). This is particularly recommended in U/f operation to relieve the DC link voltage controller with rapid ramp-down times of the ramp-function generator. - Activate the DC link voltage controller (p1240, p1280). - adapt the dynamic response of the DC-link voltage controller (p1243, p1247, p1283, p1287). - check the line supply voltage and setting in p0210. - check and correct the phase assignment at the power unit. - check the line supply phases. See also: p0210 (Drive unit line supply voltage), p1240 (Vdc controller configuration (vector control))
F30003	Power unit: DC link voltage undervoltage
Reaction:	OFF2
Cause:	The power unit has detected an undervoltage condition in the DC link. - line supply failure - line supply voltage below the permissible value. - line phase interrupted. Note: The monitoring threshold for the DC link undervoltage is the minimum of the following values: - for a calculation, refer to p0210.
Remedy:	- check the line supply voltage - check the line supply phases. See also: p0210 (Drive unit line supply voltage)
F30004	Power unit: Overtemperature heat sink AC inverter
Reaction:	OFF2
Acknowledge:	
Cause:	The temperature of the power unit heat sink has exceeded the permissible limit value. - insufficient cooling, fan failure. - overload. - ambient temperature too high. - pulse frequency too high.

3 Faults and alarms

3.2 List of faults and alarms

Fault value (r0949):
Temperature $\left[1\right.$ bit $\left.=0.01^{\circ} \mathrm{C}\right]$.
Remedy: \quad check whether the fan is running.

- check the fan elements.
- check whether the ambient temperature is in the permissible range.
- check the motor load.
- reduce the pulse frequency if this is higher than the rated pulse frequency.
Notice:
This fault can only be acknowledged after this alarm threshold for alarm A05000 has been undershot.
See also: p1800 (Pulse frequency setpoint)

F30005	Power unit: Overload I2t
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit was overloaded (r0036 $=100 \%$).
	- the permissible rated power unit current was exceeded for an inadmissibly long time.
	- the permissible load duty cycle was not maintained.
	Fault value (r0949, decimal interpretation):
	I2t [100 \% = 16384].
Remedy:	- reduce the continuous load.
	- adapt the load duty cycle.
	- check the motor and power unit rated currents.
	- reduce the current limit (p0640).
	- during operation with U/f characteristic: reduce the integral time of the current limiting controller (p1341).
	See also: roo36 (Power unit overload I2t), r0206 (Rated power unit power), p0307 (Rated motor power)

F30011	Power unit: Line phase failure in main circuit
Reaction:	OFF2 (OFF1)
Acknowledge:	IMMEDIATELY
Cause:	At the power unit, the DC link voltage ripple has exceeded the permissible limit value.
	Possible causes:
	- A line phase has failed.
	- The 3 line phases are inadmissibly unsymmetrical.
	- the fuse of a phase of a main circuit has ruptured.
	- A motor phase has failed.
	Fault value (r0949, decimal interpretation):
Remedy:	Only for internal Siemens troubleshooting. - Check the main circuit fuses. - Check whether a single-phase load is distorting the line voltages.

F30012	Power unit: Temperature sensor heat sink wire breakage
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The connection to a heat sink temperature sensor in the power unit is interrupted.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Module slot (electronics slot)
	Bit 1: Air intake
	Bit 2: Inverter 1
	Bit 3: Inverter 2
	Bit 4: Inverter 3
	Bit 5: Inverter 4
	Bit 6: Inverter 5
	Bit 7: Inverter 6

	Bit 8: Rectifier 1
	Bit 9: Rectifier 2
Remedy:	Contact the manufacturer.
F30013	Power unit: Temperature sensor heat sink short-circuit
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The heat sink temperature sensor in the power unit is short-circuited.
	Fault value (r0949, interpret hexadecimal):
	Bit 0: Module slot (electronics slot)
	Bit 1: Air intake
	Bit 2: Inverter 1
	Bit 3: Inverter 2
	Bit 4: Inverter 3
	Bit 5: Inverter 4
	Bit 6: Inverter 5
	Bit 7: Inverter 6
	Bit 8: Rectifier 1
	Bit 9: Rectifier 2
Remedy:	Contact the manufacturer.
F30015 (N, A)	Power unit: Phase failure motor cable
Reaction:	OFF2 (NONE, OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A phase failure in the motor feeder cable was detected.
	The signal can also be output in the following cases:
	- The motor is correctly connected, but the drive has stalled in U/f control. In this case, a current of 0 A is possibly measured in one phase due to asymmetry of the currents.
	- the motor is correctly connected, however the closed-speed control is instable and therefore an oscillating torque is generated.
	Note:
	Chassis power units do not feature phase failure monitoring.
Remedy:	- check the motor feeder cables.
	- increase the ramp-up or ramp-down time (p1120) if the drive has stalled in U/f control.
	- check the speed controller settings.
A30016 (N)	Power unit: Load supply switched out
Reaction:	NONE
Acknowledge:	NONE
Cause:	The DC link voltage is too low.
	Alarm value (r2124, interpret decimal):
	DC link voltage at the time of trip [0.1 V].
Remedy:	Under certain circumstances, the AC line supply is not switched on.
F30017	Power unit: Hardware current limit has responded too often
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The hardware current limitation in the relevant phase (see A30031, A30032, A30033) has responded too often. The number of times the limit has been exceeded depends on the design and type of power unit.
	- closed-loop control is incorrectly parameterized.
	- fault in the motor or in the power cables.
	- the power cables exceed the maximum permissible length.
	- motor load too high
	- power unit defective.

3 Faults and alarms

3.2 List of faults and alarms

Remedy:	Fault value (r0949, interpret binary):
	Bit 0: Phase U
	Bit 1: Phase V
	Bit 2: Phase W
	- check the motor data.
	- check the motor circuit configuration (star-delta).
	- check the motor load.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
F30021	Power unit: Ground fault
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Power unit has detected a ground fault.
	- ground fault in the power cables.
	- winding fault or ground fault at the motor.
	- CT defective.
	- when the brake is applied, this causes the hardware DC current monitoring to respond.
	Fault value (r0949, decimal interpretation):
	Absolute value, summation current [$32767=271 \%$ rated current].
Remedy:	- check the power cable connections.
	- check the motor.
	- check the CT.
	- check the cables and contacts of the brake connection (a wire is possibly broken).
	See also: p0287 (Ground fault monitoring thresholds)

F30022 Power unit: Monitoring U_ce
Reaction: OFF2
Acknowledge: POWER ON

Cause:	In the power unit, the monitoring of the collector-emitter voltage ($U_{\text {c }}$ ce $)$ of the semiconductor has responded.
	Possible causes:
	- fiber-optic cable interrupted.
	- power supply of the IGBT gating module missing.
	- short-circuit at the power unit output.
	- defective semiconductor in the power unit.
	Fault value (r0949, interpret binary):
	Bit 0: Short-circuit in phase U
	Bit 1: Short circuit in phase V
	Bit 2: Short-circuit in phase W
	Bit 3: Light transmitter enable defective
	Bit 4: U_ce group fault signal interrupted
	See also: r0949 (Fault value)
Remedy:	- check the fiber-optic cable and if required, replace.
	- check the power supply of the IGBT gating module (24 V).
	- check the power cable connections.
	- select the defective semiconductor and replace.

F30024 Power unit: Overtemperature thermal model

Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: The temperature difference between the heat sink and chip has exceeded the permissible limit value.

- the permissible load duty cycle was not maintained.
- insufficient cooling, fan failure.

3 Faults and alarms

3.2 List of faults and alarms

7: Ready for pre-charging.
8: Pre-charging started, DC link voltage less than the minimum switch-on voltage.
9: Pre-charging, DC link voltage end of pre-charging still not detected.
10: Wait for the end of the de-bounce time of the main contactor after pre-charging has been completed.
11: Pre-charging completed, ready for pulse enable.
12: Reserved.
xxxx = Missing internal enable signals, power unit (inverted bit-coded, FFFF hex -> all internal enable signals available)
Bit 0: Power supply of the IGBT gating shut down.
Bit 1: Ground fault detected.
Bit 2: Peak current intervention.
Bit 3: I2t exceeded.
Bit 4. Thermal model overtemperature calculated.
Bit 5: (heat sink, gating module, power unit) overtemperature measured.
Bit 6: Reserved.
Bit 7: Overvoltage detected.
Bit 8: Power unit has completed pre-charging, ready for pulse enable.
Bit 9: Reserved.
Bit 10: Overcurrent detected.
Bit 11: Reserved.
Bit 12: Reserved.
Bit 13: Vce fault detected, transistor de-saturated due to overcurrent/short-circuit.
Bit 14: Undervoltage detected.
See also: p0210 (Drive unit line supply voltage)
Remedy:
In general:

- check the line supply voltage at the input terminals.
- check the line supply voltage setting (p0210).
- wait until the pre-charging resistors have cooled down. For this purpose, preferably disconnect the infeed unit from the line supply.
Re 5):
- carefully observe the permissible pre-charging frequency (refer to the appropriate Equipment Manual).

Re 6):

- check the capacitance of the DC link and, if necessary, reduce it in accordance with the maximum permissible DC link capacitance (see relevant Equipment Manual).
Re 7):
- check the DC link for a ground fault or short circuit.

See also: p0210 (Drive unit line supply voltage)

A30030	Power unit: Internal overtemperature alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	The temperature inside the converter has exceeded the permissible limit value of the alarm threshold.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Fault value (r0949, decimal interpretation):
Remedy:	Only for internal Siemens troubleshooting.
	- possibly use an additional fan
	- check whether the ambient temperature is in the permissible range.
	Notice:
	This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.

A30031	Power unit: Hardware current limiting in phase U
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase U responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	- check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification $(\mathrm{p} 1910=1, \mathrm{p} 1960=1)$. - check the motor circuit configuration (star/delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables.
A30032	Power unit: Hardware current limiting in phase V
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase V responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	Check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification $(p 1910=1, p 1960=1)$. - check the motor circuit configuration (star/delta). - check the motor load. - check the power cable connections. - check the power cables for short-circuit or ground fault. - check the length of the power cables.

A30033	Power unit: Hardware current limiting in phase W
Reaction:	NONE
Acknowledge:	NONE
Cause:	Hardware current limit for phase W responded. The pulsing in this phase is inhibited for one pulse period. - closed-loop control is incorrectly parameterized. - fault in the motor or in the power cables. - the power cables exceed the maximum permissible length. - motor load too high - power unit defective. Note: Alarm A30031 is always output if, for a Power Module, the hardware current limiting of phase U, V or W responds.
Remedy:	- check the motor data and if required, recalculate the control parameters ($\mathrm{p} 0340=3$). As an alternative, run a motor data identification ($\mathrm{p} 1910=1, \mathrm{p} 1960=1$). - check the motor circuit configuration (star/delta). - check the motor load. - check the power cable connections.

3.2 List of faults and alarms

- check the power cables for short-circuit or ground fault.
- check the length of the power cables.

A30034	Power unit: Internal overtemperature
Reaction:	NONE
Acknowledge:	NONE
Cause:	The alarm threshold for internal overtemperature has been reached.
	If the temperature inside the unit continues to increase, fault F30036 may be triggered.
	- ambient temperature might be too high.
- insufficient cooling, fan failure.	
	Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting.
- check the ambient temperature.	
Remedy:	- check the fan for the inside of the unit.

F30035	Power unit: Air intake overtemperature
Reaction:	OFF1 (OFF2)
Acknowledge:	IMMEDIATELY
Cause:	The air intake in the power unit has exceeded the permissible temperature limit.
	For air-cooled power units, the temperature limit is at $55^{\circ} \mathrm{C}$.
	- ambient temperature too high.
	- insufficient cooling, fan failure.
	Fault value (r0949, decimal interpretation):
	Temperature $\left[0.01^{\circ} \mathrm{C}\right]$.
- check whether the fan is running.	
Remedy: \quad	check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	Notice:
	This fault can only be acknowledged after this alarm threshold for alarm A05002 has been undershot.

F30036	Power unit: Internal overtemperature
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature inside the drive converter has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	Fault value (r0949, decimal interpretation):
	Only for internal Siemens troubleshooting.
- check whether the fan is running.	
Remedy:	- check the fan elements.
	- check whether the ambient temperature is in the permissible range.
	Notice:
This fault can only be acknowledged once the permissible temperature limit minus 5 K has been fallen below.	

F30037	Power unit: Rectifier overtemperature
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The temperature in the rectifier of the power unit has exceeded the permissible temperature limit.
	- insufficient cooling, fan failure.
	- overload.
	- ambient temperature too high.
	- line supply phase failure.
	Fault value (ro949, decimal interpretation):
	Temperature $\left[0.01^{\circ} \mathrm{C}\right]$.

Remedy:	- check whether the fan is running.
- check the fan elements.	
- check whether the ambient temperature is in the permissible range.	
- check the motor load.	
- check the line supply phases.	
Notice:	
This fault can only be acknowledged after this alarm threshold for alarm A05004 has been undershot.	
A30042	Power unit: Fan has reached the maximum operating hours
Reaction:	NONE
Acknowledge:	NONE
Cause:	The maximum operating time of at least one fan will soon be reached, or has already been exceeded.
	Fault value (r0949, interpret binary):
Bit 0: heat sink fan will reach the maximum operating time in 500 hours.	
Bit 1: heat sink fan has exceeded the maximum operating time.	
Bit 8: internal device fan will reach the maximum operating time in 500 hours.	
Bit $9:$ internal device fan has exceeded the maximum operating time.	
Note:	
The maximum operating time of the heat sink fan in the power unit is displayed in p0252.	
The maximum operating time of the internal device fan in the power unit is internally specified and is fixed.	
Remedy:	For the fan involved, carry out the following:
- replace the fan.	
- reset the operating hours counter (p0251, p0254).	

A30049	Power unit: Internal fan faulty
Reaction:	NONE
Acknowledge:	NONE
Cause:	The internal fan has failed.
Remedy:	Check the internal fan and replace if necessary.
F30052	EEPROM data error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	EEPROM data error of the power unit module.
	Fault value (r0949, decimal interpretation):
	$0,2,3,4:$
	The EEPROM data read in from the power unit module is inconsistent.
	1:
	EEPROM data is not compatible to the firmware of the Control Unit.
Remedy:	Replace power unit module.

A30054 (F, N)	Power unit: Undervoltage when opening the brake
Reaction:	NONE
Acknowledge:	NONE
Cause:	When the brake is being opened, it is detected that the power supply voltage is less than $24 \mathrm{~V}-10 \%=21.6 \mathrm{~V}$.
	Alarm value $(\mathrm{r} 2124$, interpret decimal):
	Supply voltage fault $[0.1 \mathrm{~V}]$.
	Example:
	Alarm value $=195$--> voltage $=19.5 \mathrm{~V}$
Remedy:	Check the 24 V voltage for stability and value.

F30055 Power unit: Braking chopper overcurrent
Reaction: OFF2

Acknowledge: IMMEDIATELY
Cause: An overcurrent condition has occurred in the braking chopper.

3.2 List of faults and alarms

Remedy: \quad - check whether the braking resistor has a short circuit. \quad - for an external braking resistor, check whether the resistor may have been dimensioned too small.

A30057	Power unit: Line asymmetry
Reaction:	NONE
Acknowledge:	NONE
Cause:	Frequencies have been detected on the DC link voltage that would suggest line asymmetry or failure of a line phase.
	It is also possible that a motor phase has failed.
	Fault F30011 is output if the alarm is present and at the latest after 5 minutes.
	The precise duration depends on the power unit type and the particular frequencies.
	Alarm value (r2124, interpret decimal):
Remedy:	Only for internal Siemens troubleshooting. - check the line phase connection. If there is no phase failure of the line or motor, then line asymmetry is involved. - reduce the power in order to avoid fault F30011.

F30059	Power unit: Internal fan faulty
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The internal power unit fan has failed and is possibly defective.
Remedy:	Check the internal fan and replace if necessary.

F30071	No new actual values received from the Power Module
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	More than one actual value telegram from the power unit module has failed.
Remedy:	Check the interface (adjustment and locking) to the power unit module.

F30072 Setpoints can no longer be transferred to the Power Module

Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: More than one setpoint telegram was not able to be transferred to the power unit module.
Remedy: \quad Check the interface (adjustment and locking) to the power unit module.

F30074 (A)	Communication error between the Control Unit and Power Module
Reaction:	NONE
Acknowledge:	IMMEDIATELY
Cause:	Communications between the Control Unit (CU) and Power Module (PM) via the interface no longer possible. The
	CU may have been withdrawn or is incorrectly inserted.
	Fault value (r0949, interpret hexadecimal):
	0 hex:
	- a Control Unit with external 24 V supply was withdrawn from the Power Module during operation.
	- with the Power Module switched off, the external 24 V supply for the Control unit was interrupted for some time.
	1 hex:
	The Control Unit was withdrawn from the Power Module during operation, although the encoderless safe motion
	monitoring functions are enabled. This is not supported. After re-inserting the Control Unit in operation,
	communications to the Power Module no longer possible.
	20 A hex:
	The Control Unit was inserted on a Power Module, which has another code number.
	$20 B$ hex:
	The Control Unit was inserted on a Power Module, which although it has the same code number, has a different
	serial number. The Control Unit executes an automatic warm restart to accept the new calibration data.

Remedy:	For fault value $=0$ and 20A hex:
	Insert the Control Unit on an appropriate Power Module and continue operation. If required, carry out a POWER ON of the Control Unit.
	For fault value = 1 hex:
	Carry out a POWER ON of the Control Unit.
F30080	Power unit: Current increasing too quickly
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has detected an excessive rate of rise in the overvoltage range.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
Remedy:	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star-delta)
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.
F30081	Power unit: Switching operations too frequent
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	The power unit has executed too many switching operations for current limitation.
	- closed-loop control is incorrectly parameterized.
	- motor has a short-circuit or fault to ground (frame).
	- U/f operation: Up ramp set too low.
	- U/f operation: rated current of motor much greater than that of power unit.
	- power cables are not correctly connected.
	- power cables exceed the maximum permissible length.
	- power unit defective.
	Fault value (r0949, interpret bitwise binary):
	Bit 0: Phase U.
	Bit 1: Phase V.
	Bit 2: Phase W.
Remedy:	- check the motor data - if required, carry out commissioning.
	- check the motor circuit configuration (star-delta)
	- U/f operation: Increase up ramp.
	- U/f operation: Check assignment of rated currents of motor and power unit.
	- check the power cable connections.
	- check the power cables for short-circuit or ground fault.
	- check the length of the power cables.
	- replace power unit.

3.2 List of faults and alarms

F30105	PU: Actual value sensing fault
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	At least one incorrect actual value channel was detected on the Power Stack Adapter (PSA). The incorrect actual value channels are displayed in the following diagnostic parameters.
Remedy:	Evaluate the diagnostic parameters. If the actual value channel is incorrect, check the components and if required, replace.

A30502	Power unit: DC link overvoltage
Reaction:	NONE
Acknowledge:	NONE
Cause:	The power unit has detected overvoltage in the DC link on a pulse inhibit. - device connection voltage too high. - line reactor incorrectly dimensioned. Alarm value (r0949, interpret decimal): DC link voltage [1 bit = 100 mV]. See also: r0070 (Actual DC link voltage)
Remedy:	- check the device supply voltage (p 0210). - check the dimensioning of the line reactor. See also: p0210 (Drive unit line supply voltage)

F30600	SI P2: STOP A initiated
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 2 has detected an error and initiated a STOP A.
	- forced checking procedure of the safety shutdown path via processor 2 unsuccessful.
	- subsequent response to fault F30611 (defect in a monitoring channel).
	Fault value (r0949, decimal interpretation):
	0: Stop request from processor 1.
	1005: Pulses suppressed although STO not selected and there is no internal STOP A present.
	1010: Pulses enabled although STO is selected or an internal STOP A is present.
	9999: Subsequent response to fault F30611.
Remedy:	Select Safe Torque Off and de-select again.
	For fault value = 9999:
	- carry out diagnostics for fault F30611.
	Note:
	STO: Safe Torque Off

F30611 (A) SI P2: Defect in a monitoring channel
Reaction: NONE (OFF1, OFF2, OFF3)
Acknowledge: IMMEDIATELY (POWER ON)
Cause: The drive-integrated "Safety Integrated" function on processor 2 has detected a fault in the crosswise data comparison between the two monitoring channels and has initiated a STOP F.
As a consequence of this fault, fault F30600 (SI P2: STOP A initiated) is output.
Fault value (r0949, decimal interpretation):
0 : Stop request from processor 1.
1 ... 999:
Number of the cross-compared data that resulted in this fault. This number is also displayed in r9795.
2: SI enable safety functions (p9601, p9801). Crosswise data comparison is only carried out for the supported bits.
3: SI F-DI changeover tolerance time (p9650, p9850).
8: SI PROFIsafe address (p9610, p9810).
9: SI debounce time for STO (p9651, p9851).
1000: Watchdog timer has expired.

	Within the time of approx. $5 \times$ p9650, alternatively, the following was defined:
	- Too many signal changes have occurred at the F-DI.
	- Via PROFIsafe, STO was too frequently initiated (also as subsequent response).
	1001, 1002: Initialization error, change timer / check timer.
	2000: Status of the STO selection for both monitoring channels are different.
	2001: Feedback of the safe pulse suppression on the two monitoring channels are different.
	2003: Status of the STO terminal on the processor 1 and processor 2 are different.
	6000 ... 6999:
	Error in the PROFIsafe control.
	For these fault values, the failsafe control signals (failsafe values) are transferred to the safety functions.
	The significance of the individual message values is described in safety fault F01611.
Remedy:	Re fault values 1 ... 999 described in "Cause":
	- check the cross data comparison that resulted in a STOP F.
	- carry out a POWER ON (power off/on).
	For fault value = 1000:
	- check the wiring of the F-DI (contact problems).
	- PROFIsafe: Remove contact problems/faults at the PROFIBUS master/PROFINET controller.
	Re fault value = 1001, 1002:
	- carry out a POWER ON (power off/on).
	Re fault value = 2000, 2001, 2003:
	- check the tolerance time F-DI changeover and if required, increase the value (p9650/p9850).
	- check the wiring of the F-DI (contact problems).
	- check the causes of the STO selection in r9772.
	Re fault value $=6000 \ldots$... 6999:
	Refer to the description of the message values in safety fault F01611.
	Re fault values that are described in "Cause":
	- carry out a POWER ON (power off/on).
	- contact the Hotline.
	- replace Control Unit.
	Note:
	F-DI: Failsafe Digital Input
	STO: Safe Torque Off
N30620 (F, A)	SI P2: Safe Torque Off active
Reaction:	NONE
Acknowledge:	NONE
Cause:	The "Safe Torque Off" (STO) function has been selected on processor 2 using the input terminal and is active.
	Note:
	This message does not result in a safety stop response.
Remedy:	Not necessary.
	Note:
	STO: Safe Torque Off
F30625	SI P2: Sign-of-life error in safety data
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 2 has detected an error in the sign-of-life of the safety data and initiated a STOP A.
	- there is a communication error between processor 1 and processor 2 or communication has failed.
	- a time slice overflow of the safety software has occurred.
	Fault value (r0949, decimal interpretation):
	Only for internal Siemens troubleshooting.

3.2 List of faults and alarms

Remedy: \quad - select Safe Torque Off and de-select again.

F30649	SI P2: Internal software error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An internal error in the Safety Integrated software on processor 2 has occurred.
	Note:
	This fault results in a STOP A that cannot be acknowledged.
	Fault value (r0949, interpret hexadecimal):
	Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on).
	- re-commission the "Safety Integrated" function and carry out a POWER ON.
	- contact the Hotline.
	- replace Control Unit.
F30650	SI P2: Acceptance test required
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function on processor 2 requires an acceptance test.
	Note:
	This fault results in a STOP A that can be acknowledged.
	Fault value (r0949, decimal interpretation):
	130: Safety parameters for processor 2 not available.
	Note:
	This fault value is always output when Safety Integrated is commissioned for the first time.
	1000: Reference and actual checksum on processor 2 are not identical (booting).
	- at least one checksum-checked piece of data is defective.
	- Safety parameters set offline and loaded into the Control Unit.
	2000: Reference and actual checksum on processor 2 are not identical (commissioning mode).
	- reference checksum incorrectly entered on processor 2 (p9899 not equal to r9898).
	2003: Acceptance test is required as a safety parameter has been changed.
	9999: Subsequent response of another safety-related fault that occurred when booting that requires an acceptance test.
Remedy:	For fault value = 130:
	- carry out safety commissioning routine.
	For fault value $=1000$:
	- again carry out safety commissioning routine.
	- replace the memory card or Control Unit.
	- Using STARTER, activate the safety parameters for the drive involved (change settings, copy parameters, activate settings).
	For fault value = 2000:
	- check the safety parameters on processor 2 and adapt the reference checksum (p9899).
	For fault value = 2003:
	- Carry out an acceptance test and generate an acceptance report.
	For fault value = 9999:
	- carry out diagnostics for the other safety-related fault that is present.
	See also: p9799 (SI setpoint checksum SI parameters (processor 1)), p9899 (SI setpoint checksum SI parameters (processor 2))

F30651	SI P2: Synchronization with Control Unit unsuccessful
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The drive-integrated "Safety Integrated" function requires synchronization of the safety time slices on processor 1 and processor 2. This synchronization was unsuccessful. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on).
F30655	SI P2: Align monitoring functions
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	An error has occurred when aligning the Safety Integrated monitoring functions on processor 1 and processor 2. No common set of supported SI monitoring functions was able to be determined. - there is a communication error between processor 1 and processor 2 or communication has failed. Note: This fault results in a STOP A that cannot be acknowledged. Fault value (r0949, interpret hexadecimal): Only for internal Siemens troubleshooting.
Remedy:	- carry out a POWER ON (power off/on). - check the electrical cabinet design and cable routing for EMC compliance
F30656	SI P2: Parameter processor 2 parameter error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	When accessing the Safety Integrated parameters for the processor 2 in the non-volatile memory, an error has occurred. Note: This fault results in a STOP A that can be acknowledged. Fault value (r0949, decimal interpretation): 129: Safety parameters for processor 2 corrupted. 131: Internal software error on processor 1. 255: Internal software error on processor 2.
Remedy:	- re-commission the safety functions. - replace the memory card or Control Unit.
F30659	SI P2: Write request for parameter rejected
Reaction:	OFF2
Acknowledge:	IMMEDIATELY (POWER ON)
Cause:	The write request for one or several Safety Integrated parameters on processor 2 was rejected. Note: This fault does not result in a safety stop response. Fault value (r0949, decimal interpretation): 10: An attempt was made to enable the STO function although this cannot be supported. 15: An attempt was made to enable the motion monitoring functions integrated in the drive although these cannot be supported. 16: An attempt was made to enable the PROFIsafe communications although this cannot be supported. 18: An attempt was made to enable the PROFIsafe function for Basic Functions although this cannot be supported. 20: An attempt was made to simultaneously enable both the drive-integrated motion monitoring functions via integrated F-DI and STO via terminals, even though these cannot be supported at the same time. See also: r9771 (SI common functions (processor 1)), r9871 (SI common functions (processor 2))

3.2 List of faults and alarms

	6: Enable actual value synchronization not supported (p9301.3).
	9: Monitoring function not supported by the firmware or enable bit not used.
	24: Monitoring function SDI not supported.
Remedy:	Deselect the monitoring function involved.
	Note:
	SCA: Safe Cam
	SLP: Safely-Limited Position
	SLS: Safely-Limited Speed
	SDI: Safe Direction (safe motion direction)
	See also: p9601 (SI enable functions integrated in the drive (processor 1)), p9801 (SI enable functions integrated in the drive (processor 2)), r9871 (SI common functions (processor 2))
A30693 (F)	SI P2: Safety parameter settings changed, POWER ON required
Reaction:	NONE
Acknowledge:	NONE
Cause:	Safety parameters have been changed; these will only take effect following a POWER ON.
	Notice:
	All changed parameters of the safety motion monitoring functions will only take effect following a POWER ON.
	Alarm value (r2124, interpret decimal):
	Parameter number of the safety parameter which has changed, necessitating a POWER ON.
Remedy:	- execute the function "Copy RAM to ROM".
	- carry out a POWER ON (power off/on).
N30800 (F)	Power unit: Group signal
Reaction:	OFF2
Acknowledge:	NONE
Cause:	The power unit has detected at least one fault.
Remedy:	Evaluate the other messages that are presently available.
F30802	Power unit: Time slice overflow
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	A time slice overflow has occurred.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
F30804 (N, A)	Power unit: CRC
Reaction:	OFF2 (OFF1, OFF3)
Acknowledge:	IMMEDIATELY
Cause:	A CRC error has occurred for the power unit.
Remedy:	- carry out a POWER ON (power off/on) for all components.
	- upgrade firmware to later version.
	- contact the Hotline.
F30805	Power unit: EPROM checksum error
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	Internal parameter data is corrupted.
	Fault value (r0949, interpret hexadecimal):
	01: EEPROM access error.
	02: Too many blocks in the EEPROM.
Remedy:	Replace the module.

3.2 List of faults and alarms

F30809	Power unit: Switching information not valid
Reaction:	OFF2
Acknowledge:	IMMEDIATELY
Cause:	For 3P gating unit, the following applies:
Remedy:	The last switching status word in the setpoint telegram is identified by the end ID. Such an end ID was not found. - carry out a POWER ON (power off/on) for all components. - contact the Hotline.

A30810 (F)	Power unit: Watchdog timer
Reaction:	NONE
Acknowledge:	NONE
Cause:	When booting it was detected that the cause of the previous reset was an SAC watchdog timer overflow.
Remedy:	- carry out a POWER ON (power off/on) for all components. - upgrade firmware to later version. - contact the Hotline.

F30850	Power unit: Internal software error
Reaction:	OFF1 (NONE, OFF2, OFF3)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred in the power unit.
	Fault value (r0949, decimal interpretation): Only for internal Siemens troubleshooting.
Remedy:	- replace power unit. - if required, upgrade the firmware in the power unit. - contact the Hotline.

F30875 Power unit DRIVE-CLiQ (CU): Supply voltage failed
Reaction: OFF2
Acknowledge: IMMEDIATELY

Cause: The DRIVE-CLiQ communication from the DRIVE-CLiQ component involved to the Control Unit signals that the supply voltage has failed.
Fault cause:
9 (= 09 hex):
The power supply voltage for the components has failed.
Note regarding the message value:
The individual information is coded as follows in the message value (r0949/r2124):
0000yyxx hex: $y y=$ component number, $x x=$ error cause

Remedy:

- carry out a POWER ON (power off/on).
- check the power supply voltage wiring for the DRIVE-CLiQ component (interrupted cable, contacts, ...).
- check the dimensioning of the power supply for the DRIVE-CLiQ component.

F30903 Power unit: I2C bus error occurred

Reaction: OFF2 (IASC/DCBRK, NONE, OFF1, OFF3, STOP2)
Acknowledge:
IMMEDIATELY
Cause: Communications error with an EEPROM or A/D converter.
Fault value (r0949, interpret hexadecimal):
80000000 hex:

- internal software error.

00000001 hex ... 0000FFFF hex:

- module fault.

Remedy:
Re fault value $=80000000$ hex:

- upgrade firmware to later version.

Re fault value $=00000001$ hex. .0000 FFFF hex:

- replace the module.

A30920 (F)	Temperature sensor fault
Reaction:	NONE
Acknowledge:	NONE
Cause:	When evaluating the temperature sensor, an error occurred.
	Alarm value (r2124, interpret decimal):
	1: Wire breakage or sensor not connected (KTY: $\mathrm{R}>2120$ Ohm).
	2: Measured resistance too low (PTC: $\mathrm{R}<20$ Ohm, KTY: $\mathrm{R}<50 \mathrm{Ohm}$).
Remedy:	- make sure that the sensor is connected correctly.
	- replace the sensor.

F30950	Power unit: Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, decimal interpretation): Information about the fault source.
Only for internal Siemens troubleshooting.	
Remedy:	- If necessary, upgrade the firmware in the power unit to a later version. - contact the Hotline.

A30999 (F, N)	Power unit: Unknown alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	An alarm occurred on the power unit that cannot be interpreted by the Control Unit firmware.
	This can occur if the firmware on this component is more recent than the firmware on the Control Unit.
	Alarm value (r2124, interpret decimal):
	Alarm number.
	Note:
	If required, the significance of this new alarm can be read about in a more recent description of the Control Unit.
	- replace the firmware on the power unit by an older firmware version (r0128).
Remedy:	- upgrade the firmware on the Control Unit (r0018).

F31152 (N, A) Encoder 1: Maximum input frequency exceeded
Reaction: ENCODER (IASC/DCBRK, NONE, OFF1, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT

Cause:	The maximum input frequency of the encoder evaluation has been exceeded.
	Fault value (r0949, decimal interpretation):
Remedy:	Actual input frequency in Hz.
	- Reduce the speed.
	- Use an encoder with a lower pulse number (p0408).

F31160 (N, A)	Encoder 1: Analog sensor channel A failed
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, decimal interpretation):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4673).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
	For fault value = 1:
Remedy:	- check the output voltage of the analog sensor.
	For fault value $=2:$
	- check the voltage setting for each encoder period (p4673).
	For fault value $=3:$
	- check the range limit setting and increase it if necessary (p4676).

3.2 List of faults and alarms

F31161 (N, A)	Encoder 1: Analog sensor channel B failed
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, decimal interpretation):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4675).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
	For fault value = 1:
Remedy:	- check the output voltage of the analog sensor.
	For fault value = 2:
	- check the voltage setting for each encoder period (p4675).
	For fault value $=3:$
	- check the range limit setting and increase it if necessary (p4676).

F31163 (N, A) Encoder 1: Analog sensor position value exceeds limit value
Reaction: ENCODER (IASC/DCBRK, NONE)
Acknowledge: PULSE INHIBIT

Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
	Fault value (r0949, decimal interpretation):
1: Position value from the LVDT sensor.	
Remedy:	2: Position value from the encoder characteristic.
For fault value = 1:	
	- Check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	For fault value = 2:
	- check the coefficients of the characteristic (p4663 ... p4666).

A31442 (F, N)	Encoder 1: Battery voltage pre-alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:	Replace battery.

A31460 (N) Encoder 1: Analog sensor channel A failed
Reaction: NONE
Acknowledge: NONE

Cause: \quad The input voltage of the analog sensor is outside the permissible limits.
Alarm value (r2124, interpret decimal):
1: Input voltage outside detectable measuring range.
2: Input voltage outside measuring range set in p4673.
3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:
Re alarm value $=1$:

- check the output voltage of the analog sensor.

Re alarm value $=2$:

- check the voltage setting for each encoder period (p4673).

Re alarm value $=3$:

- check the range limit setting and increase it if necessary (p4676).

A31461 (N)	Encoder 1: Analog sensor channel B failed
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits. Alarm value (r2124, interpret decimal): 1: Input voltage outside detectable measuring range. 2: Input voltage outside the measuring range set in (p4675). 3: The absolute value of the input voltage has exceeded the range limit (p 4676).
Remedy:	Re alarm value $=1$: - check the output voltage of the analog sensor. Re alarm value $=2$: - check the voltage setting for each encoder period (p4675). Re alarm value $=3$: - check the range limit setting and increase it if necessary ($p 4676$).
A31462 (N)	Encoder 1: Analog sensor no channel active
Reaction:	NONE
Acknowledge:	NONE
Cause:	Channel A and B are not activated for the analog sensor.
Remedy:	- activate channel A and/or channel B (p4670). - check the encoder configuration (p0404.17).
A31463 (N)	Encoder 1: Analog sensor position value exceeds limit value
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Alarm value (r2124, interpret decimal): 1: Position value from the LVDT sensor. 2: Position value from the encoder characteristic.
Remedy:	Re alarm value $=1$: - Check the LVDT ratio (p4678). - check the reference signal connection at track B. Re alarm value $=2$: - check the coefficients of the characteristic (p4663 ... p4666).

A31470 (F, N)	Encoder 1: Soiling detected
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling is signaled via a 0 signal at terminal X521.7.
Remedy:	- check the plug connections
	- replace the encoder or encoder cable
F31912	Encoder 1: Device combination is not permissible
Reaction:	ENCODER (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The selected device combination is not supported.
	Fault value (r0949, decimal interpretation):
	1003:
	The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.
	1005:
	The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter.
	1006:
	The maximum duration ($31.25 \mu \mathrm{~s}$) of the EnDat transfer was exceeded.

3 Faults and alarms

3.2 List of faults and alarms

2001:
The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
2002:
The resolution of the linear measuring unit does not match the pole pair width of the linear motor
Remedy: \quad Re fault value $=1003,1005,1006$:

- Use a measuring unit that is permissible.

For fault value $=2001$:

- Set a permissible cycle combination (if required, use standard settings).

For fault value $=2002$:

- Use a measuring unit with a lower resolution (p0422).

A31915 (F, N)	Encoder 1: Configuration error
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 1 is incorrect.
	Alarm value (r2124, interpret decimal):
	1:
	Re-parameterization between fault/alarm is not permissible. 419:
	When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual value (r0483) that can no longer be represented within 32 bits.
Remedy:	Re alarm value $=1$:
	No re-parameterization between faul/alarm.
	Re alarm value $=419$:
	Reduce the fine resolution (p0419) or deactivate the monitoring (p 0437.25), if the complete multiturn range is not required.

A31930 (N)	Encoder 1: Data logger has saved data
Reaction:	NONE
Acknowledge:	NONE

Cause: \quad For the activated function "Data logger" $(p 0437.0=1)$ a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card.
The diagnostics data is saved in the following folder:
/USER/SINAMICS/DATA/SMTRC00.BIN

/USER/SINAMICS/DATA/SMTRC07.BIN

/USER/SINAMICS/DATA/SMTRCIDX.TXT

The following information is contained in the TXT file:

- Display of the last written BIN file.
- Number of write operations that are still possible (from 10000 downwards).

Note:
Only Siemens can evaluate the BIN files.
Remedy: Not necessary.
The alarm disappears automatically.
The data logger is ready to record the next fault case.

A31940 (F, N)	Encoder 1: Spindle sensor S1 voltage incorrect
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.
	Fault value (r0949, decimal interpretation):
	Signal level from sensor S1.
	Note:

A signal level of 500 mV corresponds to the numerical value 500 dec .

Remedy:	- Check the clamped tool. - Check the tolerance and if required, adapt (p5040). - Check the thresholds and if required, adapt (p5041). - Check analog sensor S1 and connections.
F32152 (N, A)	Encoder 2: Maximum input frequency exceeded
Reaction:	OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge:	PULSE INHIBIT
Cause:	The maximum input frequency of the encoder evaluation has been exceeded. Fault value (r0949, decimal interpretation): Actual input frequency in Hz .
Remedy:	- Reduce the speed. - Use an encoder with a lower pulse number (p0408).
F32160 (N, A)	Encoder 2: Analog sensor channel A failed
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits. Fault value (r0949, decimal interpretation): 1: Input voltage outside detectable measuring range. 2: Input voltage outside the measuring range set in (p4673). 3: The absolute value of the input voltage has exceeded the range limit ($p 4676$).
Remedy:	For fault value $=1$: - check the output voltage of the analog sensor. For fault value $=2$: - check the voltage setting for each encoder period (p4673). For fault value $=3$: - check the range limit setting and increase it if necessary ($p 4676$).
F32161 (N, A)	Encoder 2: Analog sensor channel B failed
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits. Fault value (r0949, decimal interpretation): 1: Input voltage outside detectable measuring range. 2: Input voltage outside the measuring range set in (p4675). 3: The absolute value of the input voltage has exceeded the range limit (p 4676).
Remedy:	For fault value $=1$: - check the output voltage of the analog sensor. For fault value $=2$: - check the voltage setting for each encoder period (p4675). For fault value $=3$: - check the range limit setting and increase it if necessary (p4676).
F32163 (N, A)	Encoder 2: Analog sensor position value exceeds limit value
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$. Fault value (r0949, decimal interpretation): 1: Position value from the LVDT sensor. 2: Position value from the encoder characteristic.
Remedy:	For fault value =1: - Check the LVDT ratio (p4678). - check the reference signal connection at track B. For fault value $=2$: - check the coefficients of the characteristic (p4663 ... p4666).

A32442 (F,N)	Encoder 2: Battery voltage pre-alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:	Replace battery.

A32460 (N)	Encoder 2: Analog sensor channel A failed
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside measuring range set in p4673.
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
	Re alarm value $=1:$
Remedy:	- check the output voltage of the analog sensor.
	Re alarm value $=2:$
	- check the voltage setting for each encoder period (p4673).
	Re alarm value $=3:$
	- check the range limit setting and increase it if necessary (p4676).

A32461 (N)	Encoder 2: Analog sensor channel B failed
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4675).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
	Re alarm value = 1:
Remedy:	- check the output voltage of the analog sensor.
	Re alarm value $=2:$
	- check the voltage setting for each encoder period (p4675).
	Re alarm value $=3:$
	- check the range limit setting and increase it if necessary (p4676).

A32462 (N)	Encoder 2: Analog sensor no channel active
Reaction:	NONE
Acknowledge:	NONE
Cause:	Channel A and B are not activated for the analog sensor.
Remedy:	- activate channel A and/or channel B (p4670).
	- check the encoder configuration (p0404.17).

A32463 (N)	Encoder 2: Analog sensor position value exceeds limit value
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
	Alarm value (r2124, interpret decimal):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
Remedy:	Re alarm value $=1:$
	- Check the LVDT ratio (p4678).
	- check the reference signal connection at track B.

Re alarm value $=2$:

- check the coefficients of the characteristic (p4663 ... p4666).

A32470 (F, N)	Encoder 2: Soiling detected
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling is signaled via a 0 signal at terminal X521.7.
Remedy:	- check the plug connections
	- replace the encoder or encoder cable
F32912	Encoder 2: Device combination is not permissible
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The selected device combination is not supported.
	Fault value (r0949, decimal interpretation):
	1003:
	The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.
	1005:
	The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter.
	1006:
	The maximum duration ($31.25 \mu \mathrm{~s}$) of the EnDat transfer was exceeded.
	2001:
	The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
	2002:
	The resolution of the linear measuring unit does not match the pole pair width of the linear motor
Remedy:	Re fault value $=1003,1005,1006$:
	- Use a measuring unit that is permissible.
	For fault value $=2001$:
	- Set a permissible cycle combination (if required, use standard settings).
	For fault value $=2002$:
	- Use a measuring unit with a lower resolution (p0422).

A32915 (F, N)	Encoder 2: Configuration error
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 2 is incorrect.
	Alarm value (r2124, interpret decimal):
	$1:$
	Re-parameterization between fault/alarm is not permissible.
	$419:$
	When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual
	value (r0483) that can no longer be represented within 32 bits.
	Re alarm value =1:
	No re-parameterization between fault/alarm.
	Re alarm value = 419:
	Reduce the fine resolution (p0419) or deactivate the monitoring (p0437.25), if the complete multiturn range is not
	required.

A32930 (N) Encoder 2: Data logger has saved data
Reaction: NONE
Acknowledge: NONE

Cause: \quad For the activated function "Data logger" ($p 0437.0=1$) a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card.

3.2 List of faults and alarms

The diagnostics data is saved in the following folder:
/USER/SINAMICS/DATA/SMTRC00.BIN
/USER/SINAMICS/DATA/SMTRC07.BIN
/USER/SINAMICS/DATA/SMTRCIDX.TXT
The following information is contained in the TXT file:

- Display of the last written BIN file.
- Number of write operations that are still possible (from 10000 downwards).

Note:
Only Siemens can evaluate the BIN files.
Remedy: Not necessary.
The alarm disappears automatically.
The data logger is ready to record the next fault case.

A32940 (F,N)	Encoder 2: Spindle sensor S1 voltage incorrect
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.
	Fault value (r0949, decimal interpretation):
	Signal level from sensor S1.
	Note:
Remedy:	A signal level of 500 mV corresponds to the numerical value 500 dec.
	- Check the clamped tool.
	- Check the tolerance and if required, adapt (p5040).
	- Check the thresholds and if required, adapt (p5041).
	- Check analog sensor S1 and connections.

F33152 (N, A) Encoder 3: Maximum input frequency exceeded
Reaction: OFF1 (IASC/DCBRK, NONE, OFF2, OFF3, STOP1, STOP2)
Acknowledge: PULSE INHIBIT
Cause: The maximum input frequency of the encoder evaluation has been exceeded.
Fault value (r0949, decimal interpretation):
Actual input frequency in Hz .
Remedy: - Reduce the speed.

- Use an encoder with a lower pulse number (p0408).

F33160 (N, A)	Encoder 3: Analog sensor channel A failed
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, decimal interpretation):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4673).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	For fault value = 1:
	- check the output voltage of the analog sensor.
	For fault value = 2:
	- check the voltage setting for each encoder period (p4673).
	For fault value = 3:
	- check the range limit setting and increase it if necessary (p4676).

F33161 (N, A)	Encoder 3: Analog sensor channel B failed
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Fault value (r0949, decimal interpretation):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4675).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	For fault value $=1$:
	- check the output voltage of the analog sensor.
	For fault value $=2$:
	- check the voltage setting for each encoder period (p4675).
	For fault value = 3:
	- check the range limit setting and increase it if necessary (p 4676).
F33163 (N, A)	Encoder 3: Analog sensor position value exceeds limit value
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
	Fault value (r0949, decimal interpretation):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
Remedy:	For fault value = 1:
	- Check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	For fault value $=2$:
	- check the coefficients of the characteristic (p4663 ... p4666).
A33442 (F, N)	Encoder 3: Battery voltage pre-alarm
Reaction:	NONE
Acknowledge:	NONE
Cause:	When switched-off, the encoder uses a battery to back up the multiturn information. The battery voltage is no longer sufficient to check the multiturn information.
Remedy:	Replace battery.
A33460 (N)	Encoder 3: Analog sensor channel A failed
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside measuring range set in p4673.
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
Remedy:	Re alarm value $=1$:
	- check the output voltage of the analog sensor.
	Re alarm value $=2$:
	- check the voltage setting for each encoder period (p4673).
	Re alarm value $=3$:
	- check the range limit setting and increase it if necessary (p4676).

3.2 List of faults and alarms

A33461 (N)	Encoder 3: Analog sensor channel B failed
Reaction:	NONE
Acknowledge:	NONE
Cause:	The input voltage of the analog sensor is outside the permissible limits.
	Alarm value (r2124, interpret decimal):
	1: Input voltage outside detectable measuring range.
	2: Input voltage outside the measuring range set in (p4675).
	3: The absolute value of the input voltage has exceeded the range limit (p4676).
	Re alarm value $=1:$
Remedy:	- check the output voltage of the analog sensor.
	Re alarm value $=2:$
	- check the voltage setting for each encoder period (p4675).
	Re alarm value $=3:$
	- check the range limit setting and increase it if necessary (p4676).

A33462 (N)	Encoder 3: Analog sensor no channel active
Reaction:	NONE
Acknowledge:	NONE
Cause:	Channel A and B are not activated for the analog sensor.
Remedy:	- activate channel A and/or channel B (p4670).
	- check the encoder configuration (p0404.17).

A33463 (N)	Encoder 3: Analog sensor position value exceeds limit value
Reaction:	NONE
Acknowledge:	NONE
Cause:	The position value has exceeded the permissible range of $-0.5 \ldots+0.5$.
	Alarm value (r2124, interpret decimal):
	1: Position value from the LVDT sensor.
	2: Position value from the encoder characteristic.
Remedy:	Re alarm value $=1:$
	- Check the LVDT ratio (p4678).
	- check the reference signal connection at track B.
	Re alarm value $=2:$
	- check the coefficients of the characteristic (p4663 ... p4666).

A33470 (F, N)	Encoder 3: Soiling detected
Reaction:	NONE
Acknowledge:	NONE
Cause:	In the case of the alternative encoder system interface on the Sensor Module Cabinet 30 (SMC30), encoder soiling is signaled via a 0 signal at terminal X521.7.
Remedy:	- check the plug connections
	- replace the encoder or encoder cable
F33912	Encoder 3: Device combination is not permissible
Reaction:	OFF1 (IASC/DCBRK, NONE)
Acknowledge:	PULSE INHIBIT
Cause:	The selected device combination is not supported.
	Fault value (r0949, decimal interpretation):
	1003:
	The connected measuring unit cannot be operated with the EnDat 2.2 converter. For instance, the measuring unit has a pulse number/resolution of $2^{\wedge} n$.
	1005:
	The type of measuring unit (incremental) is not supported by the EnDat 2.2 converter.
	1006:
	The maximum duration ($31.25 \mu \mathrm{~s}$) of the EnDat transfer was exceeded.

2001:
The set combination of current controller cycle, DP cycle and Safety cycle is not supported by the EnDat 2.2 converter.
2002:
The resolution of the linear measuring unit does not match the pole pair width of the linear motor
Remedy: \quad Re fault value $=1003,1005,1006$:

- Use a measuring unit that is permissible.

For fault value $=2001$:

- Set a permissible cycle combination (if required, use standard settings).

For fault value $=2002$:

- Use a measuring unit with a lower resolution (p0422).

A33915 (F, N)	Encoder 3: Configuration error
Reaction:	NONE
Acknowledge:	NONE
Cause:	The configuration for encoder 3 is incorrect.
	Alarm value (r2124, interpret decimal):
	1:
	Re-parameterization between fault/alarm is not permissible.
	$419:$
	When the fine resolution Gx_XIST2 is configured, the encoder identifies a maximum possible absolute position actual
	value (r0483) that can no longer be represented within 32 bits.
	Re alarm value $=1:$
	No re-parameterization between fault/alarm.
	Re alarm value = 419:
	Reduce the fine resolution (p0419) or deactivate the monitoring (p0437.25), if the complete multiturn range is not required.

A33930 (N)	Encoder 3: Data logger has saved data
Reaction:	NONE
Acknowledge:	NONE

Cause: \quad For the activated function "Data logger" $(p 0437.0=1)$ a fault has occurred with the Sensor Module. This alarm indicates that the diagnostics data corresponding to the fault was saved on the memory card.
The diagnostics data is saved in the following folder:
/USER/SINAMICS/DATA/SMTRC00.BIN

/USER/SINAMICS/DATA/SMTRC07.BIN

/USER/SINAMICS/DATA/SMTRCIDX.TXT
The following information is contained in the TXT file:

- Display of the last written BIN file.
- Number of write operations that are still possible (from 10000 downwards).

Note:
Only Siemens can evaluate the BIN files.
Remedy: Not necessary.
The alarm disappears automatically.
The data logger is ready to record the next fault case.

A33940 (F, N)	Encoder 3: Spindle sensor S1 voltage incorrect
Reaction:	NONE
Acknowledge:	NONE
Cause:	The voltage of analog sensor S1 is outside the permissible range.
	Fault value (r0949, decimal interpretation):
	Signal level from sensor S1.
	Note:

A signal level of 500 mV corresponds to the numerical value 500 dec .

3.2 List of faults and alarms

Remedy: \quad - Check the clamped tool. \quad - Check the tolerance and if required, adapt (p5040). \begin{tabular}{l}

- Check the thresholds and if required, adapt $(\mathrm{p} 5041)$.

\hline
\end{tabular}

F34950	VSM: Internal software error
Reaction:	OFF2
Acknowledge:	POWER ON
Cause:	An internal software error in the Voltage Sensing Module (VSM) has occurred.
	Fault value (r0949, decimal interpretation):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- If necessary, upgrade the firmware in the Voltage Sensing Module to a later version.
	- contact the Hotline.

F35950	TM: Internal software error
Reaction:	OFF2 (NONE)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, decimal interpretation):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- If necessary, upgrade the firmware in the Terminal Module to a later version.
	- contact the Hotline.

F36950	Hub: Internal software error
Reaction:	OFF2 (NONE)
Acknowledge:	POWER ON
Cause:	An internal software error has occurred.
	Fault value (r0949, decimal interpretation):
	Information about the fault source.
	Only for internal Siemens troubleshooting.
Remedy:	- if required, upgrade the firmware in the DRIVE-CLiQ hub module to a more recent version.
	- contact the Hotline.

A50001 (F)	PROFINET configuration error
Reaction:	NONE
Acknowledge:	NONE
Cause:	A PROFINET controller attempts to establish a connection using an incorrect configuring telegram. The "Shared
	Device" function has been activated (p8929 = 2).
	Alarm value (r2124, interpret decimal):
	10: A/F-CPU configures mixed PZD/PROFIsafe telegram.
	13: F-CPU and PROFIsafe is not activated (p9601.3).
	15: PROFIsafe telegram of the F-CPU does not match the setting in p9501.30.
	See also: p9601 (SI enable functions integrated in the drive (processor 1))
Remedy:	Check the configuration of the PROFINET controllers as well as the p8929 setting.

A50010 (F)	PROFINET Name of Station invalid
Reaction:	NONE
Acknowledge:	NONE
Cause:	PROFINET Name of Station is invalid.
Remedy:	Correct the name of the station (p8920) and activate (p8925 = 2). See also: p8920 (PN Name of Station)

A50020 (F)	PROFINET: Second controller missing
Reaction:	NONE
Acknowledge:	NONE
Cause:	The PROFINET function "Shared Device" has been activated (p8929 = 2). However, only the connection to a PROFINET controller is present.
Remedy:	Check the configuration of the PROFINET controllers as well as the p8929 setting.

A50513 (F)	FBLOCKS: Run sequence value already assigned
Reaction:	NONE
Acknowledge:	NONE
Cause:	An attempt was made to assign a run sequence value already assigned to a function block on this drive object to another additional function block on the same drive object. A run sequence value can only be precisely assigned to one function block on one drive object.
Remedy:	Set another value that is still available on this drive object for the run sequence.

A50517	FBLOCKS: Int. meas. active
Reaction:	NONE
Acknowledge:	NONE
Cause:	A Siemens internal measurement has been activated.
Remedy:	Carry out a POWER ON (power off/on) for the Control Unit involved.

F50518 FBLOCKS: Sampling time of free run-time group differs at download

Reaction: NONE

Acknowledge: IMMEDIATELY
Cause: In the STARTER/SCOUT project that was downloaded, the hardware sampling time of a free run-time group (1 <= p20000[i] <= 256) was set to a value that was either too low or too high.
The sampling time must be between 1 ms and the value r20003-r20002.
If the sampling time of the selected free run-time group is $<1 \mathrm{~ms}$, the equivalent value of 1 ms is used. If the value >= r20003, then the sampling time is set to the next higher or the same software sampling time >= r21003.
Fault value (r0949, decimal interpretation):
Number of the p20000 index of the run-time group where the sampling time is incorrectly set.
Number of the run-time group $=$ fault value +1
Remedy: - correctly set the sampling time of the run-time group.

- if required, take all of the blocks from the run-time group.

Note:
Fault F50518 only detects an incorrectly parameterized run-time group. If, after correcting p20000[i] in the project, this error occurs again at download, then the run-time group involved should be identified using the fault value (r0949) and the sampling time correctly set.

3 Faults and alarms
3.2 List of faults and alarms

Appendix

Content

A. 1 ASCII table (excerpt) 660
A. 2 List of abbreviations 661

A. $1 \quad$ ASCII table (excerpt)

The following table includes the decimal and hexadecimal notation of selected ASCII characters.

Tabelle A-1 ASCII table (excerpt)

Unit symbol	Decimal	Hexadecimal	Unit symbol	Decimal	Hexadecimal
Space characters	32	20	G	71	47
*	42	2A	H	72	48
+	43	2B	I	73	49
-	45	2D	J	74	4A
0	48	30	K	75	4B
1	49	31	L	76	4 C
2	50	32	M	77	4D
3	51	33	N	78	4E
4	52	34	0	79	4F
5	53	35	P	80	50
6	54	36	Q	81	51
7	55	37	R	82	52
8	56	38	S	83	53
9	57	39	T	84	54
A	65	41	U	85	55
B	66	42	V	86	56
C	67	43	W	87	57
D	68	44	X	88	58
E	69	45	Y	89	59
F	70	46	Z	90	5A

A. 2 List of abbreviations

Note

The following list of abbreviations includes all abbreviations and their meanings used in the entire SINAMICS family of drives.

Abbreviation

A
A...

AC
ADC
AI
AIM
ALM
AO
AOP
APC
AR
ASC
ASCII

AS-i

Induction motor
B
OC Operating condition
BERO
BI
BIA
BICO
BLM
BO
BOP
C
C
C...

CAN Controller Area Network
CBC Communication Board CAN
CBE Communication Board Ethernet
CD Compact disk
CDS Command Data Set
CompactFlash card CompactFlash Card
Cl
CLC

Connector Input
Clearance Control

Meaning

Alarm

Alternating current
Analog-digital converter
Analog input
Active Interface Module
Active Line Module
Analog output
Advanced Operator Panel
Advanced Positioning Control
Automatic restart
Armature short-circuit
American coding standard for the exchange of information

AS interface (open bus system in automation technology)
Induction motor

Operating condition
Proximity switch
Binector input
BG-Institute for Occupational Safety and Health
Binector connector technology
Basic Line Module
Binector output
Basic Operator Panel

Capacitance
Safety message
Serial bus system
Communication Board CAN
PROFINET communication module (Ethernet)
Compact disk
Command data set
CompactFlash card
Connector input
Clearance control

Abbreviation	Source of the abbreviation	Meaning
CNC	Computerized Numerical Control	Computer-supported numerical control
CO	Connector Output	Connector output
CO/BO	Connector Output/Binector Output	Connector/binector output
COB ID	CAN object identification	CAN object identification
CoL	Certificate of license	Certificate of license
COM	Common contact of a changeover relay	Center contact on a changeover contact
COMM	Commissioning	Commissioning
CP	Communications Processor	Communications processor
CPU	Central Processing Unit	Central processing unit
CRC	Cyclic Redundancy Check	Cyclic redundancy check
CSM	Control Supply Module	Control Supply Module
CU	Control unit	Control unit
CUA	Control Unit Adapter	Control Unit Adapter
CUD	Control Unit DC MASTER	Control Unit DC MASTER
D		
DAC	Digital Analog Converter	Digital-analog converter
DC	Direct Current	Direct current
DCB	Drive Control Block	Drive Control Block
DCBRK	DC Brake	DC braking
DCC	Drive Control Chart	Drive Control Chart
DCN	Direct Current Negative	Direct current negative
DCP	Direct Current Positive	Direct current positive
DDS	Drive Data Set	Drive data set
DI	Digital Input	Digital input
DI/DO	Digital Input / Digital Output	Bidirectional digital input/output
DMC	DRIVE-CLiQ Hub Module Cabinet	DRIVE-CLiQ Hub Module Cabinet
DME	DRIVE-CLiQ Hub Module External	DRIVE-CLiQ Hub Module External
DMM	Double Motor Module	Double Motor Module
DO	Digital Output	Digital output
DO	Drive Object	Drive object
DP	Distributed Peripherals	Distributed I/O
DPRAM	Dual Ported Random Access Memory	Dual-Port Random Access Memory
DQ	DRIVE-CLiQ	DRIVE-CLiQ
DRAM	Dynamic Random Access Memory	Dynamic Random Access Memory
DRIVE-CLiQ	Drive Component Link with IQ	Drive Component Link with IQ
DSC	Dynamic Servo Control	Dynamic Servo Control
DTC	Digital Time Clock	Time switch
E		
EASC	External Armature Short-Circuit	External armature short-circuit
EDS	Encoder Data Set	Encoder data set
EEPROM	Electrically Erasable Programmable Read-Only Memory	Electrically Erasable Programmable Read-Only-Memory
ESD	Electrostatic sensitive devices	Electrostatic sensitive devices

Abbreviation	Source of the abbreviation
ELCB	Earth Leakage Circuit-Breaker
ELP	Earth Leakage Protection
EMC	Electromagnetic Compatibility
EMF	Electromotive Force
EMK	Electromotive force
EMC	Electromagnetic compatibility
EN	European standard
EnDat	Encoder-Data-Interface
EP	Enable Pulses
EPOS	Basic positioner
ES	Engineering system
ESB	Equivalent circuit diagram
ESD	Electrostatic Sensitive Devices
ESM	Essential Service Mode
ESR	Extended Stop and Retract
F	
F...	Fault
FAQ	Frequently Asked Questions
FBLOCKS	Free Blocks
FCC	Function control chart
FCC	Flux current control
FD	Function Diagram
F-DI	Fail-safe Digital Input
F-DO	Fail-safe Digital Output
FEM	Separately excited synchronous motor
FEPROM	Flash-EPROM
FG	Function Generator
FI	-
FOC	Fiber-Optic Cable
FP	Function diagram
FPGA	Field programmable gate array
FW	Firmware
G	
GB	Gigabyte
GC	Global Control
GND	Ground
GSD	Generic Station Description
GSV	Gate Supply Voltage
GUID	Globally Unique Identifier

Meaning

Residual-current operated circuit breaker
Ground-fault monitoring
Electromagnetic compatibility
Electromotive force
Electromotive force
Electromagnetic compatibility
European standard
Encoder interface
Pulse enable
Basic positioner
Engineering system
Equivalent circuit diagram
Electrostatic sensitive devices
Essential service mode
Extended stop and retract

Fault
Frequently asked questions
Free function blocks
Function control chart
Flux current control
Function diagram
Failsafe digital input
Fail-safe digital output
Separately excited synchronous motor
Non-volatile write and read memory
Function generator
Residual current
Fiber-optic cable
Function diagram
Field programmable gate array
Firmware

Gigabyte
Global control telegram (broadcast telegram)
Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as M)

Generic station description file: describes the features of a PROFIBUS slave

Gate supply voltage
Globally Unique Identifier

Abbreviation	Source of the abbreviation	Meaning
H		
HF	High Frequency	High frequency
HFD	Radio frequency reactor	Radio frequency reactor
HLA	Hydraulic Linear Actuator	Hydraulic linear drive
HLG	Ramp-function generator	Ramp-function generator
HM	Hydraulic Module	Hydraulic Module
HMI	Human Machine Interface	Human machine interface
HTL	High-Threshold Logic	Logic with high fault threshold
HW	Hardware	Hardware
1		
u.d.	Under development	Under development: This property is currently not available
I/O	Input/Output	Input/output
I2C	Inter-Integrated Circuit	Internal serial data bus
IASC	Internal Armature Short-Circuit	Internal armature short-circuit
Commissioning	Commissioning	Commissioning
ID	Identifier	Identification
IE	Industrial Ethernet	Industrial Ethernet
IEC	International Electrotechnical Commission	International Electrotechnical Commission
IF	Interface	Interface
IGBT	Insulated Gate Bipolar Transistor	Bipolar transistor with insulated control electrode
IGCT	Integrated Gate-Controlled Thyristor	Semiconductor power switch with integrated control electrode
IL	Pulse suppression	Pulse suppression
IP	Internet Protocol	Internet Protocol
IPO	Interpolator	Interpolator
IT	Isolé Terre	Non-grounded three-phase line supply
IVP	Internal Voltage Protection	Internal voltage protection
J		
JOG	Jogging	Jog
K		
CDC	Data cross-check	Data cross-check
KHP	Know-How Protection	Know-how protection
KIP	Kinetic buffering	Kinetic buffering
Kp	-	Proportional gain
KTY	-	Special temperature sensor
L		
L	-	Symbol for inductance
LED	Light Emitting Diode	Light-emitting diode
LIN	Linear motor	Linear motor
LR	Position controller	Position controller
LSB	Least Significant Bit	Least Significant Bit
LSC	Line-Side Converter	Line-side converter

Abbreviation	Source of the abbreviation	Meaning
LSS	Line-Side Switch	Line-side switch
LU	Length Unit	Length unit
LWL	Fiber-optic cable	Fiber-optic cable
M		
M	-	Symbol for torque
M	Ground	Reference potential for all signal and operating voltages, usually defined as 0 V (also referred to as GND)
MB	Megabyte	Megabyte
MCC	Motion control chart	Motion control chart
MDI	Manual Data Input	Manual data input
MDS	Motor Data Set	Motor data set
MLFB	Machine-readable product designation	Machine-readable product designation
MM	Motor Module	Motor Module
MMC	Man-Machine Communication	Man-machine communication
MMC	Micro Memory Card	Micro memory card
MSB	Most Significant Bit	Most significant bit
MSC	Motor-Side Converter	Motor-side converter
MSCY_C1	Master Slave Cycle Class 1	Cyclic communication between master (class 1) and slave
MSC	Motor-side converter	Motor-side converter
MT	Messtaster	Messtaster
N		
N. C.	Not Connected	Not connected
N...	No Report	No report or internal message
NAMUR	Standardization association for measurement and control in chemical industries	Standardization association for measurement and control in chemical industries
NC	Normally Closed (contact)	NC contact
NC	Numerical Control	Numerical control
NEMA	National Electrical Manufacturers Association	Standardization body in the US
NM	Zero mark	Zero mark
NO	Normally Open (contact)	NO contact
LSC	Line-side converter	Line-side converter
NVRAM	Non-Volatile Random Access Memory	Non-volatile read/write memory
0		
OA	Open Architecture	Software component (technology package) which provides additional functions for the SINAMICS drive system
OAIF	Open Architecture Interface	Version of the SINAMICS firmware from which the OA-application can be used
OASP	Open Architecture Support Package	Expands the STARTER commissioning tool by the corresponding OA-application
OC	Operating Condition	Operating condition
OEM	Original Equipment Manufacturer	Original equipment manufacturer

Abbreviation	Source of the abbreviation	Meaning
OLP	Optical Link Plug	Bus connector for fiber-optic cable
OMI	Option Module Interface	Option Module Interface
P		
p...	-	Adjustable parameters
P1	Processor 1	CPU 1
P2	Processor 2	CPU 2
PB	PROFIBUS	PROFIBUS
PcCtrl	PC Control	Master control
PD	PROFIdrive	PROFIdrive
PDS	Power unit Data Set	Power unit data set
PE	Protective Earth	Protective ground
PELV	Protective Extra-Low Voltage	Protective extra-low voltage
PEM	Permanent-magnet synchronous motor	Permanent-magnet synchronous motor
PG	Programming device	Programming device
PI	Proportional integral	Proportional integral
PID	Proportional integral differential	Proportional integral differential
PLC	Programmable Logic Controller	Programmable logic controller
PLL	Phase-locked loop	Phase-locked loop
PM	Power Module	Power Module
PN	PROFINET	PROFINET
PNO	PROFIBUS user organization	PROFIBUS user organization
PPI	Point-to-Point Interface	Point-to-point interface
PRBS	Pseudo Random Binary Signal	White noise
PROFIBUS	Process Field Bus	Serial data bus
PS	Power Supply	Power supply
PSA	Power stack adapter	Power stack adapter
PTC	Positive Temperature Coefficient	Positive temperature coefficient
PTP	Point-To-Point	Point-to-point
PWM	Pulse Width Modulation	Pulse width modulation
PZD	Process data	Process data
Q		
R		
r...	-	Display parameters (read only)
RAM	Random Access Memory	Read and write memory
RCCB	Residual Current Circuit Breaker	Residual-current operated circuit breaker
RCD	Residual Current Device	Residual-current operated circuit breaker
RCM	Residual Current Monitor	Residual current monitor
RFG	Ramp Function Generator	Ramp-function generator
RJ45	Registered Jack 45	Term for an 8-pin socket system for data transmission with shielded or non-shielded multiwire copper cables
RKA	Cooling unit	Cooling unit
RLM	Renewable Line Module	Renewable Line Module

Abbreviation	Source of the abbreviation
RO	Read Only
ROM	Read-Only Memory
RPDO	Receive Process Data Object
RS232	Recommended Standard 232
RS485	Recommended Standard 485
RTC	Real-Time Clock
RZA	Space vector approximation
S	
S1	-
S3	-
SAM	Safe Acceleration Monitor
SBC	Safe Brake Control
SBH	Safe operating stop
SBR	Safe Brake Ramp
SBT	Safe Brake Test
SCA	Safe Cam
SD Card	SecureDigital Card
SDI	Safe Direction
SE	Safe software limit switch
SG	Safely-limited speed
SGA	Safety-related output
SGE	Safety-related input
SH	Safe standstill
SI	Safety Integrated
SIL	Safety Integrity Level
SLM	Smart Line Module
SLP	Safely-Limited Position
SLS	Safely-Limited Speed
SLVC	Sensorless Vector Control
SM	Sensor Module
SMC	Sensor Module Cabinet
SME	Sensor Module External
SMI	SINAMICS Sensor Module Integrated
SMM	Single Motor Module
SN	Sicherer Software-Nocken
SOS	Safe Operating Stop
SP	Service pack
SP	Safe Position
SPC	Setpoint Channel

Meaning

Read only
Read-only memory
Receive Process Data Object
Interface standard for cable-connected serial data transmission between a sender and receiver (also known as EIA232)

Interface standard for a cable-connected differential, parallel, and/or serial bus system (data transmission between a number of senders and receivers, also known as EIA485)

Real-time clock
Space vector approximation

Continuous duty

Intermittent duty
Safe acceleration monitoring
Safe brake control
Safe operating stop
Safe brake ramp monitoring
Safe brake test
Safe cam
Secure digital memory card
Safe motion direction
Safe software limit switch
Safely-limited speed
Safety-related output
Safety-related input
Safe standstill
Safety Integrated
Safety Integrity Level
Smart Line Module
Safely-limited position
Safely-limited speed
Vector control without encoder
Sensor Module
Sensor Module Cabinet
Sensor Module External
SINAMICS Sensor Module Integrated
Single Motor Module
Safe software cam
Safe operating stop
Service pack
Safe position
Setpoint channel

Abbreviation	Source of the abbreviation	Meaning
SPI	Serial Peripheral Interface	Serial peripheral interface
SPS	Programmable logic controller	Programmable logic controller
SS1	Safe Stop 1	Safe Stop 1 (monitored for time and ramp)
SS2	Safe Stop 2	Safe Stop 2
SSI	Synchronous Serial Interface	Synchronous serial interface
SSM	Safe Speed Monitor	Safe feedback from speed monitoring device
SSP	SINAMICS support package	SINAMICS support package
STO	Safe Torque Off	Safe torque off
STW	Steuerwort	Steuerwort
T		
TB	Terminal Board	Terminal Board
TIA	Totally Integrated Automation	Totally Integrated Automation
TM	Terminal Module	Terminal Module
TN	Terre Neutre	Grounded three-phase line supply
Tn	-	Integral time
TPDO	Transmit Process Data Object	Transmit Process Data Object
TT	Terre Terre	Grounded three-phase line supply
TTL	Transistor-Transistor Logic	Transistor-transistor logic
Tv	- Actar	Action time
U		
UL	Underwriters Laboratories Inc.	Underwriters Laboratories Inc.
UPS	Uninterruptible Power Supply	Uninterruptible power supply
USV	Uninterruptible power supply	Uninterruptible power supply
UTC	Universal Time Coordinated	Universal time coordinated
v		
VC	Vector Control	Vector control
Vdc	-	DC-link voltage
VdcN	-	Partial DC-link voltage, negative
VdcP	- Par	Partial DC-link voltage, positive
VDE	Verband Deutscher Elektrotechniker [Association of German Electrical Engineers]	Verband Deutscher Elektrotechniker [Association of German Electrical Engineers]
VDI	Association of German Engineers	Association of German Engineers
VPM	Voltage Protection Module	Voltage Protection Module
Vpp	Volt peak to peak	Volt peak to peak
VSM	Voltage Sensing Module	Voltage Sensing Module
W		
WEA	Automatic restart	Automatic restart
MT	Machine tool	Machine tool
X		
XML	Extensible Markup Language	Extensible Markup Language (standard language for Web publishing and document management)

Abbreviation	Source of the abbreviation	Meaning
\mathbf{Y}		
\mathbf{Z}		DC link
DC link	DC link	Zero mark
ZM	Zero Mark	Status word

A. 2 List of abbreviations

Index

Numbers

1020
Explanation of the symbols (Part 1), 418 1021

Explanation of the symbols (Part 2), 419
1022
Explanation of the symbols (Part 3), 420 1030

Handling BICO technology, 421 2201

Connection overview, 423
2220
Digital inputs, electrically isolated (DI 0 ... DI 3), 424 2241

Digital outputs (DO $0 \ldots$ DO 1), 425
2251
Analog inputs (AI $0 \ldots$ AI 1), 426
2256
Analog inputs as digital inputs (DI 11 ... DI 12), 427
2280
Quick commissioning via DIP switch, 428
2381
Control commands and interrogation commands, 430
2382
States, 431
2401
Overview PROFIdrive, 433
2410
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 434
2420
Telegrams and process data (PZD), 435
2440
PZD receive signals interconnection, 436
2441
STW1 control word interconnection (p2038 = 2), 437
2442
STW1 control word interconnection (p2038 = 0), 438
2446
STW3 control word interconnection, 439
2450
PZD send signals interconnection, 440
2451
ZSW1 status word interconnection (p2038 = 2), 441
2452
ZSW1 status word interconnection (p2038 = 0), 442

2456

ZSW3 status word interconnection, 443 2468

Receive telegram, free interconnection via BICO (p0922 = 999), 444
2470
Send telegram, free interconnection via BICO (p0922 = 999), 445
2472
Status words, free interconnection, 446
2501
Control word sequence control, 455
2503
Status word sequence control, 456 2505

Control word, setpoint channel, 457
2510
Status word 1 (r0052), 458
2511
Status word 2 (r0053), 459
2512
Control word 1 (r0054), 460
2513
Control word 2 (r0055), 461
2520
Control word speed controller, 462
2522
Status word speed controller (r1407), 463
2526
Status word closed-loop control (r0056), 464 2530

Status word, closed-loop current control, 465
2534
Status word, monitoring functions 1, 466
2536
Status word, monitoring functions 2,467
2537
Status word, monitoring functions 3,468
2546
Control word, faults/alarms, 469
2548
Status word faults/alarms 1 and 2, 470 2634

Sequence control - Missing enables, 471
2701

Basic braking control, 473

3001
Overview of setpoint channel, 475
3010
Fixed speed setpoints, binary selection (p1016 = 2), 476
3011
Fixed speed setpoints, direct selection (p1016 = 1), 477
3020
Motorized potentiometer, 478
3030
Main/supplementary setpoint, setpoint scaling, jogging, 479
3040
Direction limiting and direction reversal, 480
3050
Skip frequency bands and speed limitations, 481
3060
Simple ramp-function generator, 482
3070
Extended ramp-function generator, 483
3080
Ramp-function generator selection, -status word, -tracking, 484
6020
Speed control and generation of the torque limits, overview, 486
6030
Speed setpoint, droop, 487
6031
Pre-control balancing, acceleration model, 488
6040
Speed controller, 489
6050
Kp_n-/Tn_n adaptation, 490
6060
Torque setpoint, 491
Vdc_max controller and Vdc_min controller, 492

6300

U/f control, overview, 493
6301
U/f characteristic and voltage boost, 494
6310
Resonance damping and slip compensation (V/F), 495
6320
Vdc_max controller, 496
6490
Speed control configuration, 497
6491
Flux controller configuration, 498
6630
Upper/lower torque limit, 499

6640
Current/power/torque limits , 500
6700
Current control, overview, 501
6710
Current setpoint filter, 502
6714
Iq and Id controller, 503
6721
Id setpoint (PEM), 504
6722
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 505
6723
Field weakening controller, flux controller (ASM, p0300 = 1), 506
6724
Field weakening controller (PEM), 507
6730
Interface to the Power Module (ASM, p0300 = 1), 508
6731
Interface to the Power Module (PEM), 509
6799
Display signals, 510
7200
Run-time groups/Sampling times, 514
Sampling times of the runtime groups, 512
7210
AND (AND function block with 4 inputs), 515
7212
OR (OR function blocks with 4 inputs), 516
7214
XOR (XOR function blocks with 4 inputs), 517
7216
NOT (inverter), 518
7220
ADD (adder with 4 inputs),
SUB (subtracter), 519
7222
MUL (multiplier),
7224
AVA (absolute value generator), 521
7225
NCM (numeric comparator), 522
7226
PLI (scaling polyline), 523
7230
MFP (pulse generator), PCL (pulse contractor), 524
7232
PDE (switch-in delay), 525

7233
PDF (switch-out delay), 526
7234
PST (pulse stretcher), 527
7240
RSR (RS flip-flop),
DFR (D flip-flop), 528
7250
BSW (binary change-over switch), NSW (numeric change-over switch), 529
7260
LIM (limiter), 530
7262
PT1 (smoothing element), 531
7264
INT (integrator), DIF (differentiating element), 532
7270
LVM (limit value monitor, double-sided with hysteresis), 533
7950
Fixed values, binary selection (p2216 = 2), 535
7951
Fixed values, direct selection (p2216 = 1), 536
7954
Motorized potentiometer, 537
7958
Closed-loop control, 538
8005
Overview, signals and monitoring functions, 540
8010
Speed messages 1, 541
8011
Speed messages 2, 542
8012
Torque signals, motor locked/stalled, 543
8013
Load monitoring, 544
8014
Thermal monitoring, power module, 545
8016
Thermal monitoring, motor, 546
8017
Thermal motor models, 547
8020
Monitoring functions 1, 548
8021
Monitoring functions 2, 549
8050
Overview of diagnostics, 551
8060
Fault buffer, 552
8065
Alarm buffer, 553

8070
Faults/alarms trigger word (r2129), 554
8075
Faults/alarms configuration, 555
8560
Command data sets
(CDS), 557
8565
Drive data sets
(DDS), 558
9310
Configuration, addresses and diagnostics, 448
9342
STW1 control word interconnection, 449
9352
ZSW1 status word interconnection, 450
9360
Receive telegram, free interconnection via BICO
(p0922 = 999), 451
9370
Send telegram, free interconnection via BICO (p0922 = 999), 452
9372
Status word, free interconnection, 453

A

Acknowledgment
Adjustable, 565
Default, 565
IMMEDIATELY, 563
POWER ON, 563
PULSE INHIBIT, 563
Adjustable parameters, 9
Alarm
Cause, 565
Display, 560
Explanation of list, 564
Fault location, 565
General, 560
How to distinguish an alarm from a fault, 560
List of all alarms, 568
Name, 565
Number, 564
Number range, 566
Remedy, 565
Alarm buffer, 550
Alarm value, 565
ASCII table, 660
Axxxx, 564

B

BI, Binector Input, 10
BICO technology, 421

Binector
Input (BI), 10
Output (BO), 10
Bit array (parameter), 16
BO, Binector Output, 10
brake control, 472

C

Calculated, 11
Can be changed (parameters), 13
CDS, command data set, 13, 556, 557
CI, Connector Input, 10
Closed-loop control
Technology controller, 538
Vector, 485
CO, Connector Output, 10
CO/BO, Connector/Binector Output, 10
Command data sets, 556
Configuring messages, 550
Connector
Input (CI), 10
Output (CO), 10
Control words, 429, 432, 447

D

Data record/data set, 556
Command data set, 13
Drive data set, 13
Encoder data set, 14
Motor data set, 14
Power unit data set, 14
Data set, 556
Command data set, CDS, 13
Drive data set, DDS, 13
Encoder data set, EDS, 14
Motor data set, MDS, 14
Power unit data set, PDS, 14
Data type (parameters), 12
DCBRK, 562
DDS, drive data set, 13, 556, 558
Dependency (parameter), 16
Description (parameter), 15
Direction of rotation limiting, 474
Direction reversal, 474
Directory
Complete table of contents, 5
Index, 671
List of abbreviations, 661
List of contents, function diagrams, 412
Display
Alarms, 560
Faults, 560
Display parameters, 9

Drive Data Sets, 556
Dynamic index (parameters), 13

E

EDS, encoder data set, 14, 556
ENCODER, 562
Encoder data sets, 556
Events, 539

F

Factory setting, 15
Fault
Acknowledgment, 563, 565
Cause, 565
Display, 560
Explanation of list, 564
Fault location, 565
Fault reaction, 561, 565
General, 560
How to distinguish a fault from an alarm, 560
List of all faults, 568
Name, 565
Number, 564
Number range, 566
Remedy, 565
Fault buffer, 550
Structure, 552
Fault value, 565
Fixed speed setpoints, 474
Fixed values, 535, 536
Function diagram (parameters), 15
Function diagrams, brake control
Basic braking control, 473
Function diagrams, data sets
Command data sets
(CDS), 557
Drive data sets
(DDS), 558
Function diagrams, diagnostics
Alarm buffer, 553
Fault buffer, 552
Faults/alarms configuration, 555
Faults/alarms trigger word (r2129), 554
Overview, 551
Function diagrams, fieldbus interface
Configuration, addresses and diagnostics, 448
Receive telegram, free interconnection via BICO (p0922 = 999), 451
Send telegram, free interconnection via BICO (p0922 = 999), 452
Status word, free interconnection, 453
STW1 control word interconnection, 449
ZSW1 status word interconnection, 450

Function diagrams, free function blocks
ADD (adder with 4 inputs), 519
AND, 515
AVA (absolute value generator), 521
BSW (binary switch), 529
DFR (D flip-flop), 528
DIF (differentiating element), 532
DIV (divider), 520
INT (integrator), 532
LIM (limiter), 530
LVM (limit value monitor, double-sided with hysteresis), 533
MFP (pulse generator), 524
MUL (multiplier), 520
NCM (numeric comparator), 522
NOT (inverter), 518
NSW (numeric change-over switch), 529
OR, 516
PCL (pulse contractor), 524
PDE (switch-in delay), 525
PDF (switch-out delay), 526
PLI (scaling polyline), 523
PST (pulse stretcher), 527
PT1 (smoothing element), 531
RSR (RS flip-flop), 528
Run-time groups/Sampling times, 514
SUB (subtracter), 519
XOR (exclusive OR), 517
Function diagrams, general information
Explanation of the symbols (Part 1), 418
Explanation of the symbols (Part 2), 419
Explanation of the symbols (Part 3), 420
Handling BICO technology, 421
Function diagrams, input/output terminals, DIP switch
Analog inputs (AI $0 \ldots$ AI 1), 426
Analog inputs as digital inputs (DI 11 ... DI 12), 427
Connection overview, 423
Digital inputs, electrically isolated (DI $0 \ldots$ DI 3), 424
Digital outputs (DO 0 ... DO 1), 425
Quick commissioning via DIP switch, 428

Function diagrams, internal control/status words
Control word sequence control, 455
Control word speed controller, 462
Control word 1 (r0054), 460
Control word 2 (r0055), 461
Control word, faults/alarms, 469
Control word, setpoint channel, 457
Sequence control - Missing enables, 471
Status word closed-loop control (r0056), 464
Status word faults/alarms 1 and 2, 470
Status word sequence control, 456
Status word speed controller (r1407), 463
Status word 1 (r0052), 458
Status word 2 (r0053), 459
Status word, closed-loop current control, 465
Status word, monitoring functions 1, 466
Status word, monitoring functions 2,467
Status word, monitoring functions 3, 468
Function diagrams, PROFIdrive
Overview, 433
PROFIBUS (PB) / PROFINET (PN), addresses and diagnostics, 434
PZD receive signals interconnection, 436
PZD send signals interconnection, 440
Receive telegram, free interconnection via BICO (p0922 = 999), 444
Send telegram, free interconnection via BICO (p0922 = 999), 445
Status words, free interconnection, 446
STW1 control word interconnection (p2038 = 0), 438
STW1 control word interconnection (p2038 = 2), 437
STW3 control word interconnection, 439
Telegrams and process data (PZD), 435
ZSW1 status word interconnection (p2038 = 0), 442
ZSW1 status word interconnection (p2038 = 2), 441
ZSW3 status word interconnection, 443
Function diagrams, PROFlenergy
Control commands and interrogation commands, 430
States, 431
Function diagrams, setpoint channel
Direction limiting and direction reversal, 480
Extended ramp-function generator, 483
Fixed speed setpoints, binary selection (p1016 = 2), 476
Fixed speed setpoints, direct selection (p1016 = 1), 477
Main/supplementary setpoint, setpoint scaling, jogging, 479
Motorized potentiometer, 478
Overview, 475
Ramp-function generator selection, -status word, -tracking, 484
Simple ramp-function generator, 482
Skip frequency bands and speed limitations, 481

Function diagrams, signals and monitoring functions
Load monitoring, 544
Monitoring functions 1, 548
Monitoring functions 2, 549
Overview, 540
Speed messages 1,541
Speed messages 2, 542
Thermal monitoring, motor, 546
Thermal monitoring, power module, 545
Thermal motor models, 547
Torque signals, motor locked/stalled, 543
Function diagrams, technology controller
Closed-loop control, 538
Fixed values, binary selection (p2216 = 2), 535
Fixed values, direct selection (p2216 = 1), 536
Motorized potentiometer, 537
Function diagrams, Technology functions
Sampling times of the runtime groups, 512
Function diagrams, vector control
Current control, overview, 501
Current setpoint filter, 502
Current/power/torque limits , 500
Display signals, 510
Field weakening characteristic, Id setpoint (ASM, p0300 = 1), 505
Field weakening controller (PEM), 507
Field weakening controller, flux controller (ASM, p0300 = 1), 506
Flux controller configuration, 498
Id setpoint (PEM), 504
Interface to the Power Module (ASM, p0300 = 1), 508
Interface to the Power Module (PEM), 509
Iq and Id controller, 503
Kp_n-/Tn_n adaptation, 490
Pre-control balancing, acceleration model, 488
Resonance damping and slip compensation (V/F), 495
Speed control and generation of the torque limits, overview, 486
Speed control configuration, 497
Speed controller, 489
Speed setpoint, droop, 487
Torque setpoint, 491
U/f characteristic and voltage boost, 494
U/f control, overview, 493
Upper/lower torque limit, 499
Vdc_max controller, 496
Vdc_max controller and Vdc_min controller, 492
Fxxxx, 564

G

General
about function diagrams, 417
about parameters, 8
on faults and alarms, 560

I

IASC, 562
Index
Parameter, 9
Index (parameters), 16
Internal control words, 454
Internal control/status words, 454

J

Jog, 474, 479

L

Linked parameter, 9
List
Abbreviations, 661
ASCII table, 660
Binector inputs (BI parameters), 397
Binector outputs (BO parameters), 401
Command data sets, 388
Connector inputs (Cl parameters), 399
Connector outputs (CO parameters), 402
Connector/binector outputs (CO/BO parameters), 405
Drive Data Sets, 390
Encoder data sets, 396
Faults and alarms, 568
Message ranges, 566
Motor data sets, 395
Parameter ranges, 17
Parameters for quick commissioning, 409
Parameters for write protection and know-how protection, 407
Parameters, all, 20
Power unit data sets, 396
List of abbreviations, 661
Load monitoring, 539

M

Manufacturer-specific telegrams, 435
MDS, Motor Data Set, 14
Message buffer, 550
Message frames, 429, 432, 447
Monitoring, 539
Motorized potentiometer, 474, 537

N

Name
Alarm, 565
Fault, 565

Number
Alarm, 564
Fault, 564
Parameter, 9
Number range
Alarms, 566
Faults, 566
Parameter, 17
Number ranges of faults and alarms, 566

0

OFF1, 561
OFF1_DELAYED, 561
OFF2, 561
OFF3, 562

P

Parameter
Access level, 11
Bit array, 16
Calculated, 11
Can be changed, 13
Command data sets, 388
CU variants, 10
Data type, 12
Dependency, 16
Description, 15
Drive Data Sets, 390
Dynamic index, 13
Encoder data sets, 396
Full name, 10
Function diagram, 15
Index, 9, 16
Linked parameter, 9
List for quick commissioning, 409
List of all parameters, 20
List of the binector inputs, 397
List of the binector outputs, 401
List of the connector inputs, 399
List of the connector outputs, 402
List of the connector/binector outputs, 405
Motor data sets, 395
Number, 9
Number range, 17
Parameter values, 15
Power unit data sets, 396
Recommendation, 16
Safety guidelines, 16
Scaling, 13
Short name, 10
Unit group, 14
Unit selection, 14
Values, 16
Password for access level 4, 11
PDS, Power unit Data Set, 14

Process data, 429, 432, 447
PROFIBUS, 429, 432, 447
PROFIdrive, 429, 432, 447
PROFINET, 429, 432, 447
pxxxx, 9

Q

Quick commissioning (parameters), 409

R

Ramp-function generator, 474
Reaction to faults, 561
Resetting faults, 565
rxxxx, 9

S

Safety notices (parameter), 16
Scaling, 13
Setpoint channel, 474
Signals, 539
Skip frequency bands, 474
Speed control
Vector, 485
Speed signals, 539
Standard telegrams, 435
Status words
Free interconnection via BICO, 429, 432, 447
Internal, 454
STOP1, 562
STOP2, 562

T

Technology controller, 534
Technology functions, 511, 513
Thermal monitoring, 539
Torque signals, 539
Transducer
Binector-connector, 446
Connector-binector, 444
Triggering when messages are issued (r2129), 550

U

Unit (parameter), 14

V

Values (parameter), 16
Vector control
Current setpoint filter, 502
Droop Function, 487
Iq and Id controller, 503
Kp_n-/Tn_n adaptation, 490
Speed control configuration, 497
Speed controller, 489
Table of Contents, 485
Torque setpoint, 491

Version

List of all parameters, 20
List of faults and alarms, 568

Siemens AG	Subject to change
Industry Sector	© Siemens AG 2014
Drive Technologies	
Motion Control Systems	
Postfach 3180	
91050 ERLANGEN	
GERMANY	

[^0]: Note:
 Re bit 02:
 The bit is an OR logic operation - bit 00 and bit 01 .

[^1]: Z

[^2]:
 sue»бе!р ио!џоип」

[^3]: ノ๐ұиоэ ィоғэәへ OL＇Z

[^4]: ノ๐ұиоэ ィоғэәへ OL＇Z
 sweı6e！p uо！џ৩ић 乙

[^5]: งılsoube！ด Gl＇Z
 sueィ6е！р uо！џ৩ип」 Z

